Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the cohomological dimension of the localization functor


Authors: Henryk Hecht and Dragan Miličić
Journal: Proc. Amer. Math. Soc. 108 (1990), 249-254
MSC: Primary 17B35
DOI: https://doi.org/10.1090/S0002-9939-1990-0984793-4
MathSciNet review: 984793
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The left cohomological dimension of the localization functor is infinite for singular infinitesimal characters.


References [Enhancements On Off] (What's this?)

  • [1] A. Beilinson and J. Bernstein, Localisation de $ \mathfrak{g}$-modules, C.R. Acad. Sci. Paris, Ser. I 292 (1981), 15-18. MR 610137 (82k:14015)
  • [2] -, A generalization of Casselman's submodule theorem, in "Representation theory of reductive groups," Birkhäuser, Boston, 1983, pp. 35-52.
  • [3] N. Bourbaki, Algèbre commutative, Masson, Paris.
  • [4] -, Groupes et algebres de Lie, Masson, Paris.
  • [5] A Grothendieck, Eléments de géométrie algébrique IV, Publ. I.H.E.S. No. 20 (1964).
  • [6] H. Hecht, D. Miličić, W. Schmid, J. A. Wolf, Localization and standard modules for real semisimple Lie groups I: The duality theorem, Inventiones Math. 90 (1987), 297-332. MR 910203 (89e:22025)
  • [7] A. Joseph, J. T. Stafford, Modules of $ \mathfrak{k}$-finite vectors over semi-simple Lie algebras, Proc. London Math. Soc. 49 (1984), 361-384. MR 748996 (86a:17004)
  • [8] D. Miličić, Localization and representation theory of reductive Lie groups," (mimeographed notes, to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 17B35

Retrieve articles in all journals with MSC: 17B35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0984793-4
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society