Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On extensions of models of strong fragments of arithmetic

Author: Roman Kossak
Journal: Proc. Amer. Math. Soc. 108 (1990), 223-232
MSC: Primary 03F30; Secondary 03C62, 03H15
Correction: Proc. Amer. Math. Soc. 112 (1991), 913-914.
MathSciNet review: 984802
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a weak notion of recursive saturation (not always semiregularity) we prove that there are no finitely generated countable models of $ B\Sigma _n { + \neg I{\Sigma _n}( {n > 0} )} $. We consider the problem of not almost semiregularity of models of $ I{\Sigma _n} + \neg B{\Sigma _{n + 1}}$ . From a partial solution to this problem we deduce a generalization of the theorem of Smorynski and Stavi on cofinal extensions of recursively saturated models of arithmetic.

References [Enhancements On Off] (What's this?)

  • [C1] P. Clote, Partition relations in arithmetic, in Lecture Notes in Math. vol. 1130 Springer-Verlag, Heidelberg, 1985, pp. 32-68. MR 799036 (87f:03165)
  • [C2] -, A note on the MacDowell-Specker theorem, Fundamenta Mathematicae 127 (1986), pp. 163-170. MR 882624 (88d:03073)
  • [GD] H. Gaifman and C. Dimitracopoulos, Fragments of arithmetic and the MRDP theorem, Logic and Algorithmic, Monographie No. 30 de L'Enseignement Mathematique, pp. 187-206. MR 648303 (83j:03095)
  • [KP] L. Kirby and J. Paris, Initial segments of models of Peano's axioms, in Lecture Notes in Math. vol. 619, Springer-Verlag, Heidelberg, 1979, pp. 211-226. MR 0491157 (58:10423)
  • [K1] R. Kossak, A certain class of models of arithmetic, Journal of Symbolic Logic 48 (1983). pp. 311-319. MR 704085 (84j:03076)
  • [K2] -, Models with the $ \omega $-property, to appear in Journal of Symbolic Logic.
  • [Ku] D. Kueker, Back and forth arguments in infinitary logics, in Lecture Notes in Math. vol. 492, Springer-Verlag, Heidelberg, 1975, pp. 17-71. MR 0462940 (57:2905)
  • [L] H. Lessan, Models of arithmetic, Ph.D. Thesis, Manchester 1978.
  • [P] J. Paris, Some conservation results for fragments of arithmetic, in Lecture Notes in Math. vol. 890, Springer-Verlag, Heidelberg, 1980, pp. 251-262. MR 645006 (83f:03060)
  • [PK] J. Paris and L. Kirby, $ {\Sigma _n}$-collection schemas in arithmetic, Logic Colloquium 77, North Holland, Amsterdam 1978. MR 519815 (81e:03056)
  • [PW] J. Paris and A. Wilkie, A note on the end extension problem, (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 03F30, 03C62, 03H15

Retrieve articles in all journals with MSC: 03F30, 03C62, 03H15

Additional Information

Keywords: fragments of arithmetic, recursive saturation, end extensions, cofinal extensions, automorphisms
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society