On extensions of models of strong fragments of arithmetic

Author:
Roman Kossak

Journal:
Proc. Amer. Math. Soc. **108** (1990), 223-232

MSC:
Primary 03F30; Secondary 03C62, 03H15

DOI:
https://doi.org/10.1090/S0002-9939-1990-0984802-2

Correction:
Proc. Amer. Math. Soc. **112** (1991), 913-914.

MathSciNet review:
984802

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a weak notion of recursive saturation (not always semiregularity) we prove that there are no finitely generated countable models of . We consider the problem of not almost semiregularity of models of . From a partial solution to this problem we deduce a generalization of the theorem of Smorynski and Stavi on cofinal extensions of recursively saturated models of arithmetic.

**[C1]**P. Clote,*Partition relations in arithmetic*, in Lecture Notes in Math. vol. 1130 Springer-Verlag, Heidelberg, 1985, pp. 32-68. MR**799036 (87f:03165)****[C2]**-,*A note on the MacDowell-Specker theorem*, Fundamenta Mathematicae**127**(1986), pp. 163-170. MR**882624 (88d:03073)****[GD]**H. Gaifman and C. Dimitracopoulos,*Fragments of arithmetic and the MRDP theorem*, Logic and Algorithmic, Monographie No. 30 de L'Enseignement Mathematique, pp. 187-206. MR**648303 (83j:03095)****[KP]**L. Kirby and J. Paris,*Initial segments of models of Peano's axioms*, in Lecture Notes in Math. vol. 619, Springer-Verlag, Heidelberg, 1979, pp. 211-226. MR**0491157 (58:10423)****[K1]**R. Kossak,*A certain class of models of arithmetic*, Journal of Symbolic Logic**48**(1983). pp. 311-319. MR**704085 (84j:03076)****[K2]**-,*Models with the**-property*, to appear in Journal of Symbolic Logic.**[Ku]**D. Kueker,*Back and forth arguments in infinitary logics*, in Lecture Notes in Math. vol. 492, Springer-Verlag, Heidelberg, 1975, pp. 17-71. MR**0462940 (57:2905)****[L]**H. Lessan,*Models of arithmetic*, Ph.D. Thesis, Manchester 1978.**[P]**J. Paris,*Some conservation results for fragments of arithmetic*, in Lecture Notes in Math. vol. 890, Springer-Verlag, Heidelberg, 1980, pp. 251-262. MR**645006 (83f:03060)****[PK]**J. Paris and L. Kirby,*-collection schemas in arithmetic*, Logic Colloquium 77, North Holland, Amsterdam 1978. MR**519815 (81e:03056)****[PW]**J. Paris and A. Wilkie,*A note on the end extension problem*, (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
03F30,
03C62,
03H15

Retrieve articles in all journals with MSC: 03F30, 03C62, 03H15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-0984802-2

Keywords:
fragments of arithmetic,
recursive saturation,
end extensions,
cofinal extensions,
automorphisms

Article copyright:
© Copyright 1990
American Mathematical Society