GAUSSIAN CURVATURES OF LORENTZIAN METRICS
ON THE PLANE AND PUNCTURED PLANES

JIANGFAN LI

(Communicated by Jonathan M. Rosenberg)

Dedicated to Professors Gu Chaohao and Hu Hesheng

Abstract. We prove that every $f \in C^k(\mathbb{R}^2)$ is the Gaussian curvature of some C^{k+1}-Lorentzian metric $(0 \leq k \leq \infty)$. Let M denote the cylinder. We prove that every continuous function on M is the Gaussian curvature of some C^1-Lorentzian metric. If $f \in C^k(M)$ satisfies the condition (H) in the Lemma 2 below, then it is the curvature function of some C^{k+1}-Lorentzian metric. If $f \in C^k(\mathbb{R}^2)$ $(1 \leq k \leq \infty)$ has compact support, then the Lorentzian metric can be made complete.

1. Introduction

Given a function on the surface, does there exist a metric whose Gaussian curvature is the given function? This is to solve the second order nonlinear partial differential equation:

$$K(l) = f,$$

where f is the given function, $K(l)$ is the Gaussian curvature of the definite or indefinite metric l. Many mathematicians have studied the case when l is a Riemannian metric. For the Lorentzian metric l, Burns [1] got some results in 1977. In this note we are going to solve (1) on the 2-dimensional plane and to make a try on punctured planes (skirts, shirts, T-shirts, etc.).

2. Curvature functions on the plane

Lemma 1. Suppose $h \in L^1(\mathbb{R}^2), \|h\|_{L^1(\mathbb{R}^2)} < 1/\pi$; then

$$w(x, y) = \int_0^x \int_0^y h(s, t)e^{w(s, \xi)} ds \, dt \quad \text{on } \mathbb{R}^2$$

admits a unique solution $w \in C(\mathbb{R}^2)$.
Proof. Define a sequence by
\[u_0 = 0, \]
\[u_{n+1}(x, y) = \int_0^x \int_0^y h(s, t) e^{u_n(s, t)} ds \, dt, \quad n = 0, 1, 2, \ldots; \]
then \(\|u_n\|_{C(R^2)} < 1, \|u_{n+1} - u_n\|_{C(R^2)} < (\varepsilon/\pi)\|u_n - u_{n-1}\|_{C(R^2)}. \) Hence \(\{u_n\} \)
converges uniformly on \(R^2 \) and the limit function is a solution of the equation (2). The uniqueness is obvious. Q.E.D.

Theorem 1. Let \(k \) be a nonnegative integer or \(k = \infty \). Suppose \(f \in C^k(R^2) \). Then there exists a \(C^{k+1} \)-Lorentzian metric on \(R^2 \) which is pointwise conformal to the standard flat Lorentzian metric \(dx \, dy \) such that its Gaussian curvature equals \(f \).

Proof. Let \(G \in C^\infty(R) \) such that, for all \(t \in R \)
\[G(t) > \max\{\pi(|f(x, y)| + 1) \mid |x| \leq |y| = |t| \text{ or } |y| \leq |x| = |t|\}. \]
Let
\[h(x, y) = -\frac{1}{2} f(x, y) e^{-x^2 - y^2}; \]
then
\[\|h\|_{L^1(R^2)} < \frac{1}{\pi}. \]
By Lemma 1, there exists \(w \in C(R^2) \) satisfying the equation (2). Then
\[u(x, y) = w(x, y) - x^2 - y^2 - \ln(G(x)G(y)) \]
satisfies
\[u_{xy} = -\frac{1}{2} f(x, y) e^u \quad \text{on } R^2, \]
which means the metric \(e^u dx \, dy \) has the Gaussian curvature \(f \). Q.E.D.

As a consequence, given a \(C^k \)-function \(f \) on any 2-manifold \(M \), for each point \(p \in M \), locally there always exists a \(C^{k+1} \)-Lorentzian metric whose Gaussian curvature equals \(f \) in a neighborhood of \(p \).

3. Curvature functions on a punctured plane

Lemma 2. Let \(k \) be a nonnegative integer or \(k = \infty \), \(p = (x_0, y_0) \in R^2 \). Suppose \(f \in C^k(R^2 \setminus \{p\}) \) satisfies the following condition:

For each \(n \) \((0 \leq n < k + 1)\), there exists a function \(F \in L^1[-1, 1] \) \(\{F(0) = +\infty\}, \) such that, for \((x, y) \in [-1, 1]^2 \setminus \{(0, 0)\} \),
\[\left| \frac{\partial}{\partial x_n} f(x + x_0, y + y_0) \right| + \left| \frac{\partial}{\partial y_n} f(x + x_0, y + y_0) \right| < \min\{F(x), F(y)\}. \]
Then any solution of the equation (2) (replacing \(h \) by \(f \)) is in fact in \(C^{k+1}(\mathbb{R}^2 \setminus \{p\}) \).

Proof. By Lebesgue’s dominated convergence theorem. Q.E.D.

Theorem 2. Let \(k \) be a nonnegative integer or \(k = \infty \). \(p = (0,0) \in \mathbb{R}^2 \). Suppose \(f \in C^k(\mathbb{R}^2 \setminus \{p\}) \) satisfies the condition (H) of Lemma 2; then there exists a \(C^{k+1} \)-Lorentzian metric on \(\mathbb{R}^2 \setminus \{p\} \) such that its Gaussian curvature equals \(f \).

Proof. There is \(G \in C^\infty(\mathbb{R}) \) satisfying (3) for \(|t| > 1 \). Then

\[
g(x,y) = -\frac{f(x,y)}{2G(x)G(y)}e^{-x^2-y^2}
\]

is integrable on \(\mathbb{R}^2 \). Pick \(\epsilon > 0 \) such that

\[
h = \epsilon g
\]

satisfies \(\|h\|_{L^1(\mathbb{R}^2)} < 1/\pi \). Clearly \(h \) also satisfies the condition (H) of Lemma 2. Hence the solution \(w \) to the equation (2) (in Lemma 1) is in \(C^{k+1}(\mathbb{R}^2 \setminus \{p\}) \) by Lemma 2, and so is the function \(u \) which is defined by

\[
u(x,y) = w(x,y) - x - y - \ln(G(x)G(y)) + \ln\epsilon.
\]

Then the Lorentzian metric \(e^u dx\,dy \), which has the Gaussian curvature \(f \), is of class \(C^{k+1} \). Q.E.D.

Remark 1. Let \(M = \mathbb{R}^2 \setminus \{ \text{finite points} \} \), \(f \in C^k(M) \). If for each \((x_0,y_0) \in \mathbb{R}^2 \setminus M\), \(f \) satisfies the condition (H) of Lemma 2, then the same conclusion holds.

Theorem 3. On a cylinder, every continuous function is the Gaussian curvature for some \(C^1 \)-Lorentzian metric.

Proof. Look at a cylinder as \(\mathbb{R}^2 \setminus \{(0,0)\} \), say, \(p = (0,0) \). Suppose \(f \in C(\mathbb{R}^2 \setminus \{p\}) \).

We first shrink \(f \) into control. Pick \(g \in C(\mathbb{R}^2 \setminus \{(0,0)\}) \), such that

\[
g(x,y) = h(r) \text{ depends only on } r = \sqrt{x^2 + y^2},
\]

\[
g > f \text{ on } \mathbb{R}^2 \setminus \{(0,0)\},
\]

\[
h(r) \text{ is decreasing for } r \in (0,2].
\]

Let \(\varphi \) be a \(C^\infty \)-diffeomorphism of \((0, + \infty)\) such that \(\varphi|_{(1, + \infty)} = \text{id} \) and \(h(\varphi) \in L^1(0, 1] \). Define

\[
\Phi: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\},
\]

\[
\Phi(x,y) = \left(\frac{\varphi(r)}{r}x, \frac{\varphi(r)}{r}y \right),
\]

where \(r = \sqrt{x^2 + y^2} \). Define

\[
F(t) = h(\varphi(||t||)) \quad \text{for } t \neq 0, \quad \text{and } F(0) = +\infty.
\]
Then $F \in L^1[-1, 1]$ and for $(x, y) \in [-1, 1] \setminus \{(0, 0)\}$,

$$f(\Phi(x, y)) = f \left(\frac{\varphi(r)x}{r}, \frac{\varphi(r)y}{r} \right) < g \left(\frac{\varphi(r)x}{r}, \frac{\varphi(r)y}{r} \right)$$

$$= h(\varphi(r)) = F(r) \leq \min(F(x), F(y)).$$

Applying Theorem 2 we know that $f(\Phi)$ is the curvature function of some C^1-Lorentzian metric l. Hence the pull-back metric $(\Phi^{-1})^*l$ has the curvature f. Q.E.D.

Remark 2. The same conclusion holds for the manifold $R^2 \setminus A$ where A is a discrete subset of R^2.

4. CURVATURE FUNCTIONS FOR COMPLETE LORENTZIAN METRICS

Throughout this section, we use the notation $B_r = \{x^2 + y^2 \leq r^2\}$. For the Lorentzian metric $e^{u}dx\,dy$ on R^2, the equations of the geodesic are

$$\ddot{x} + u_x\dot{x}^2 = 0,$$

$$\ddot{y} + u_y\dot{y}^2 = 0.$$

In particular, the characteristic lines (i.e. those lines parallel to the x-axis or y-axis) are geodesics. We say a geodesic $\gamma(t)$ is forward complete (complete, respectively) if it exists for all $t \geq 0$ (all t, resp.). Note the fact that for a positive function $f \in C(R)$, the solution to the problem

$$\dot{x} = f(x), \quad x(0) = x_0$$

exists for all $t \geq 0$ if and only if

$$\int_{x_0}^{+\infty} \frac{dx}{f(x)} = +\infty.$$

This implies

Lemma 3. Let $u \in C(R^2)$. The characteristic lines of the metric $e^{u}dx\,dy$ are complete if and only if for any x and y,

$$\int_{0}^{+\infty} e^{u(x,y)}\,dx = \int_{0}^{+\infty} e^{u(x,y)}\,dy = \int_{-\infty}^{0} e^{u(x,y)}\,dx = \int_{-\infty}^{0} e^{u(x,y)}\,dy = +\infty.\quad (4)$$

Proof. Consider the characteristic line $\gamma(t) = (x(t), y_0)$. It is a geodesic if properly parametrized:

$$\ddot{x}(t) = -u_x(x(t), y_0)\dot{x}(t)^2, \quad x(0) = x_0, \quad \dot{x}(0) \neq 0.$$

Let

$$p(t) = \dot{x}(t);$$

then

$$\frac{dp}{dx} = -u_x(x, y_0)p.$$

Therefore

$$p = c e^{u(x, y_0)} \quad (c = \dot{x}(0)e^{u(x_0, y_0)} \neq 0).$$
That is
\[\frac{dx}{dt} = ce^{-u(x,y_0)}. \]

Hence \(\gamma(t) \) is forward complete if and only if \(x(t) \) is, if and only if
\[\int_{x_0}^{\infty} e^{u(x,y_0)} dx = +\infty \quad (\text{if } c > 0) \]
or
\[\int_{-\infty}^{x_0} e^{u(x,y_0)} dx = +\infty \quad (\text{if } c < 0). \]

All characteristic lines are complete if and only if every characteristic line is forward complete, if and only if (4) holds. Q.E.D.

Remark 3. By Lemma 3 one can see that the metric constructed in the proof of Theorem 1 is not complete.

Corollary 1. If \(u \in C(R^2) \) satisfies
\[\liminf_{r \to \infty} \left(\|u\|_{C(B_r)} - \ln R \right) < +\infty, \]
then every characteristic line of the Lorentzian metric \(e^u dx dy \) on \(R^2 \) is complete.

Proof. It is equivalent to prove that the integrals in Lemma 3 are \(+\infty \). From the condition, there exist a sequence \(r_n \to +\infty \) and a constant \(c > 0 \) such that
\[\|u\|_{C(B_{r_n})} - \ln r_n \leq \ln c. \]

Then
\[e^u \geq \frac{1}{cr_n} \quad \text{on } B_{r_n}. \]

Fix \(y \). Define
\[x_n = \sqrt{r_n^2 - y^2}. \]

By passing to a subsequence we may assume all \(r_n > |y| \) and
\[\frac{x_n - x_{n-1}}{r_n} > \frac{1}{2} \quad \text{for all } n. \]

Then
\[\int_0^{\infty} e^{u(x,y')} dx \geq \sum_n \int_{x_{n-1}}^{x_n} e^{u(x,y')} dx \]
\[\geq \sum_n \frac{1}{c} \frac{x_n - x_{n-1}}{r_n} \quad (\text{by (5)}) \]
\[= +\infty \quad (\text{by (6)}). \]

Similarly the other three integrals also equal \(+\infty \). Then Lemma 3 applies. Q.E.D.
Theorem 4. If \(u \in C^{1,\alpha}(R^2) \) \((0 < \alpha < 1)\) satisfies

\[
\liminf_{r \to \infty \land R \geq r} (\|u\|_{C^1(B_r)} - \frac{1}{2} \ln \ln R) = -\infty
\]

then \(e^udu\,dx\,dy \) is a complete Lorentzian metric on \(R^2 \).

Proof. By Corollary 1, every characteristic line is complete. Now consider an arbitrary noncharacteristic geodesic \(\gamma(t) = (x(t), y(t)) \) \((\dot{x}(t)\dot{y}(t) \neq 0)\). It suffices to prove that \(\gamma \) is forward complete. Define the notations

\[p(t) = \dot{x}(t), q(t) = \dot{y}(t), \]
\[\alpha(t) = \frac{1}{p(t)}, \beta(t) = \frac{1}{q(t)}, \]
\[X(t) = (x(t), y(t), \alpha(t), \beta(t)), \]
\[\|(x, y, z, t)\| = \sqrt{x^2 + y^2 + z^2 + t^2}, \]
\[\|X\|_{C[0,T]} = \sup_{t \in [0,T]} \|X(t)\|. \]

The condition implies that there exist sequences

\[
(8) \quad r_n \to +\infty \quad \text{and} \quad c_n \to +\infty
\]

such that for all \(n \),

\[
\|u\|_{C^1(B_{r_n})} \leq \frac{1}{2} \ln \ln r_n - c_n.
\]

We may assume \(\{\frac{1}{2} \ln \ln r_n - c_n\} \) is an increasing sequence. Pick an increasing function \(c(r) \) such that, for all \(r \geq 0 \),

\[
(9) \quad \|u\|_{C^1(B_r)} \leq c(r),
\]

and for all \(n \),

\[
(10) \quad c(r_n) = \frac{1}{2} \ln \ln r_n - c_n.
\]

For an arbitrary \(L > 0 \), we are going to estimate

\[T(L) = \sup\{t | X([0, t]) \text{ exists and } \|X\|_{C[0,t]} \leq L\}. \]

Note that along a geodesic \(\gamma(t) \), \(e^{u(\gamma(t))} p(t)q(t) = \text{constant} \). Hence

\[
(11) \quad p(t)q(t) = e^{u(\gamma(0)) - u(\gamma(t))} p(0)q(0).
\]

Denote

\[
(12) \quad a(L) = e^{2c(L)}|p(0)q(0)|.
\]

Then (9) and (11) show that for \(t \in [0, T(L)] \),

\[
|p(t)q(t)| \leq a(L),
\]

\[
p^2(t) + q^2(t) = p^2 q^2 (\alpha^2 + \beta^2) \leq a(L)^2 \|X(t)\|^2,
\]

\[
|u_x(\gamma(t))| + |u_y(\gamma(t))| \leq 2c(L).
\]
Since γ is the geodesic of $e^{u}dx\,dy$, therefore

$$X(t) = X_0 + \int_0^t (p(t), q(t), u_x(\gamma(t)), u_y(\gamma(t))) \, dt,$$

where $X_0 = (x(0), y(0), \alpha(0), \beta(0))$ is the initial data. From (13)-(15), we obtain that, for $t \in [0, T(L)]$,

$$\|X(t)\| \leq \|X_0\| + \int_0^t (2c(L) + a(L)\|X(t)\|) \, dt.$$

Let

$$f(t) = \int_0^t \|X(t)\| \, dt;$$

then (16) is

$$f'(t) \leq \|X_0\| + 2ct + af(t),$$

$$\frac{d}{dt}(e^{-at}f(t)) = e^{-at}(f' - af) \leq e^{-at}(\|X_0\| + 2ct),$$

where $a = a(L)$ and $c = c(L)$. Integrating both sides, we get

$$e^{-at}f(t) \leq \frac{2c}{a^2} + \frac{\|X_0\|}{a} - e^{-at}\left(\frac{2c}{a^2}t + \frac{2c}{a^2} + \frac{\|X_0\|}{a}\right),$$

$$f(t) \leq \left(\frac{2c}{a^2} + \frac{\|X_0\|}{a}\right)(e^{at} - 1) - \frac{2c}{a}t.$$

Then (16)-(18) imply that, for $t \in [0, T(L)]$,

$$\|X(t)\| \leq M_L(t),$$

where $M_L \in C^\infty(R)$ is defined as

$$M_L(t) = \|X_0\| + \left(\frac{2c(L)}{a(L)} + \|X_0\|\right)(e^{a(L)t} - 1).$$

Define

$$t_n = \frac{1}{a(r_n)} \ln \frac{a(r_n)r_n + 2c(r_n)}{a(r_n)\|X_0\| + 2c(r_n)},$$

that is

$$M_{r_n}(t_n) = r_n.$$

Then (19) shows that, as long as $X(t)$ exists,

$$\|X(t)\| \leq r_n \quad \text{for} \quad t \in [0, t_n].$$

But (8),(10), (12) and (20) imply

$$t_n \to +\infty \quad (n \to \infty).$$

Then (21) and (22) imply that there exists $L \in C(R)$ such that for all $t \geq 0$, as long as $X(t)$ exists,

$$\|X(t)\| \leq L(t).$$
Now (13) and (23) imply a priori estimate
\[x(t)^2 + y(t)^2 + p(t)^2 + q(t)^2 \leq (1 + a(L(t))^2)L(t)^2, \]
which guarantees that $\gamma(t)$ exists for all $t \geq 0$. Q.E.D.

Remark 4. If $u \in C^1(R^2)$ satisfies (7) and has the following property:

For any compact subset $K \subset R^2$, there exists $\varepsilon > 0$ such that for any initial data $p \in K, v \in S^1 = \{x^2 + y^2 = 1\} \subset R^2$, the geodesic $\gamma(t)$ with $\gamma(0) = p$ and $\dot{\gamma}(0) = v$ exists unique on $t \in [0, \varepsilon]$;

then the Lorentzian metric $e^u dx \, dy$ on R^2 is complete. By Peano's existence theorem in the theory of ordinary differential equations, the local existence of the geodesic is always true. But the uniqueness might be false. If $u \in C^{1,\alpha}(R^2)$ $(0 < \alpha < 1)$, then the uniqueness is also true.

Theorem 5. Let $f \in C^k(R^2)$ $(1 \leq k < \infty)$,
\[F(r) = \sup_{(x,y) \in B_r} \int_0^r (|f(x,t)| + |f(t,y)|) dt. \]

If there exist two nonnegative functions $g, h \in C(R)$ and a constant $c > 0$ such that
\[\|p\|_{L^1(R^2)} < \infty \quad \text{where } p(x,y) = f(x,y)e^{-g(x)-h(y)}, \]
and
\[\liminf_{r \to \infty R \geq r} \left(cF(R) + \|g\|_{C^1[-R,R]} + \|h\|_{C^1[-R,R]} - \frac{1}{2} \ln \ln R \right) = -\infty, \]
then f is the curvature function for some complete C^{k+1}-Lorentzian metric $e^u dx \, dy$ on R^2.

Proof. Pick $\varepsilon > 0$, such that
\[\|\varepsilon p\|_{L^1(R^2)} < \frac{1}{\pi}, \]
and
\[\liminf_{r \to \infty R \geq r} \left(\varepsilon F(R) + \|g\|_{C^1[-R,R]} + \|h\|_{C^1[-R,R]} - \frac{1}{2} \ln \ln R \right) = -\infty. \]

By Lemma 1, there exists $w \in C^{k+1}(R^2)$ satisfying
\[w(x,y) = -\int_0^x \int_0^y \varepsilon p(s,t)e^{w(s,t)} ds \, dt. \]
Clearly $\|w\|_{C(R^2)} \leq 1$. Then (25) implies, for all $r > 0$,
\[\|w\|_{C^1(B_r)} \leq 1 + \varepsilon F(r). \]
Let
\[u(x,y) = w(x,y) - g(x) - h(y). \]
Then
\[(27) \quad \|u\|_{C^1(B_r)} \leq 1 + \|g\|_{C^1([-r,r],\mathbb{R})} + \|h\|_{C^1([-r,r],\mathbb{R})} + \varepsilon F(r) . \]
Then (24), (27) and theorem 4 imply that $e^u dx dy$ is a complete Lorentzian metric. (25) and (26) imply that $K(e^u dx dy) = 2ef$. Then the complete metric $2e e^u dx dy$ has the curvature f. Q.E.D.

Remark 5. Theorem 5 also holds for $f \in C^\alpha(\mathbb{R}^2)$, $(0 < \alpha < 1)$.

Taking $g = h = 0$, we obtain the following:

Corollary 2. Let $f \in C^k(\mathbb{R}^2)$, $(1 \leq k \leq \infty)$. If $\|f\|_{L^1(\mathbb{R}^2)} < \infty$ and if there exists a constant c such that
\[
\liminf_{r \to \infty} \left(\sup_{(x,y) \in B_R} \int_{-R}^R (|f(x,t)| + |f(t,y)|) \, dt - c \ln \ln R \right) = -\infty ,
\]
then f is the curvature function for some complete C^{k+1}-Lorentzian metric $e^u dx dy$ on \mathbb{R}^2.

Acknowledgment

The author thanks Professor Jerry Kazdan cordially for informing him of the reference [1]. He also thanks the referee for some suggestions.

References