Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Bounds on the expectation of functions of martingales and sums of positive RVs in terms of norms of sums of independent random variables


Author: Victor H. de la Peña
Journal: Proc. Amer. Math. Soc. 108 (1990), 233-239
MSC: Primary 60E15; Secondary 60G42, 60G50
DOI: https://doi.org/10.1090/S0002-9939-1990-0990432-9
MathSciNet review: 990432
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \left( {{x_i}} \right)$ be a sequence of random variables. Let $ \left( {{w_i}} \right)$ be a sequence of independent random variables such that for each $ i, {w_i}$, has the same distribution as $ {x_i}$. If $ {S_n} = {x_1} + {x_2} + \cdots + {x_n}$ is a martingale and $ \Psi$ is a convex increasing function such that $ \Psi \left( {\sqrt x } \right)$ is concave on $ [0,\infty )$ and $ \Psi (0) = 0$ then,

$\displaystyle E\Psi \left( {{{\max }_{j \leq n}}\left\vert {\sum\limits_{i = 1}... ...CE\Psi \left( {\left\vert {\sum\limits_{i = 1}^j {{w_i}} } \right\vert} \right)$

for a universal constant $ C,(0 < C < \infty )$ independent of $ \Psi ,n$, and $ \left( {{x_i}} \right)$.

The same inequality holds if $ \left( {{x_i}} \right)$ is a sequence of nonnegative random variables and $ \Psi $ is now any nondecreasing concave function on $ [0,\infty )$ with $ \Psi (0) = 0$. Interestingly, if $ \Psi \left( {\sqrt x } \right)$ is convex and $ \Psi$ grows at most polynomially fast, the above inequality reverses.

By comparing martingales to sums of independent random variables, this paper presents a one-sided approximation to the order of magnitude of expectations of functions of martingales. This approximation is best possible among all approximations depending only on the one-dimensional distribution of the martingale differences.


References [Enhancements On Off] (What's this?)

  • [1] D. R. Brillinger, A note on the rate of convergence of a mean, Biometrika 49 (3,4) (1962), 574. MR 0156372 (27:6295)
  • [2] D. L. Burkholder, B. J. Davis, and R. F. Gundy, Inequalities for convex functions of operators on martingales, Proc. Sixth Berkeley Sympos. Math. Stat. Prob. 2, 1972, pp. 223-240. MR 0400380 (53:4214)
  • [3] S. W. Dharmadhikari and M. Sreehari, On convergence in $ r$-mean of normalized partial sums, Ann. Probability 3 (6), (1975) 1023-1024. MR 0397869 (53:1725)
  • [4] P. Hitczenko, Comparison of mements for tangent sequences of random variables, Probab. Theory Related Fields 78 (1988), 223-230. MR 945110 (90a:60089)
  • [5] W. B. Johnson and G. Schechtman, Sums at independent random variables in rearrangement invariant function spaces, Ann. Probability 17 (2) (1989), 789-807. MR 985390 (90h:60045)
  • [6] M. J. Klass, Toward a universal law of the iterated logarithm, Part I, Z. Wahrscheinlichkeithstheorie und verw. Gebiete 36 (1976), 165-178. MR 0415742 (54:3822)
  • [7] -, A method of approximating expectations of functions of sums of independent random variables, Ann. Probability 9 (3) (1981), 413-428. MR 614627 (82f:60119)
  • [8] B. von Bahr and C. G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, $ 1 \leq r \leq 2$, Ann. Math. Statist., 36 (1965), 299-303. MR 0170407 (30:645)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60E15, 60G42, 60G50

Retrieve articles in all journals with MSC: 60E15, 60G42, 60G50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0990432-9
Keywords: Martingales, sums of independent random variables
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society