Let \mathbb{Q}_p be the p-adic completion of \mathbb{Q} for a prime p. Let $\overline{\mathbb{Q}}_p$ be the algebraic closure of \mathbb{Q}_p, and \mathbb{C}_p be its p-adic completion which is an algebraically closed field of cardinality 2^{\aleph_0}. Let $\mathbb{Q}_p^{\text{unram}}$ be the maximum unramified extension field of \mathbb{Q}_p. Then $\mathbb{Q}_p^{\text{unram}} = \mathbb{Q}_p(W)$, where W is the set of all roots of unity whose orders are prime to p. Let $\mathbb{C}_p^{\text{unram}}$ be the p-adic closure of $\mathbb{Q}_p^{\text{unram}}$ in \mathbb{C}_p. Koblitz [1] asked whether $\mathbb{C}_p^{\text{unram}}$ has uncountably infinite transcendence degree over \mathbb{Q}_p and \mathbb{C}_p has uncountably infinite transcendence degree over $\mathbb{C}_p^{\text{unram}}$. Lampert [2] answered that the transcendence degree of $\mathbb{C}_p^{\text{unram}}$ over \mathbb{Q}_p is 2^{\aleph_0} and the transcendence degree of \mathbb{C}_p over $\mathbb{C}_p^{\text{unram}}$ is 2^{\aleph_0} by constructing sets of algebraically independent numbers of cardinality 2^{\aleph_0}. Here we will give more explicit examples of such sets which cannot be obtained by the method in [2].

Theorem. Let K be an intermediate field between \mathbb{Q}_p and \mathbb{C}_p. Let $\alpha_1, \ldots, \alpha_m$ be in \mathbb{C}_p and $\alpha_1, \ldots, \alpha_{m-1}$ be algebraically independent over K. Suppose that for $i = 1, \ldots, m-1$ there exist sequences $\{\beta_{ik}\}_{k \geq 1}$ in \mathbb{C}_p converging to α_i and a sequence $\{S_k\}_{k \geq 1}$ of finite subsets of $\text{Aut}(\mathbb{C}_p/K(\{\beta_{ik}\}_{1 \leq i \leq m-1}))$ which satisfies

\[
\lim_{k \to \infty} |S_k| = \infty \quad \text{and} \quad \alpha_m^\sigma \neq \alpha_m^\tau \quad \text{for any} \quad \sigma, \tau \in S_k \text{ with } \sigma \neq \tau,
\]

\[
\max_{1 \leq i \leq m-1} |\alpha_i - \beta_{ik}|_p = o \left(\min_{\sigma, \tau \in S_k} |\alpha_m^\sigma - \alpha_m^\tau|_p \right) \quad \text{as } k \to \infty,
\]

where we define the left-hand side of (2) to be 0 if $m = 1$. Then $\alpha_1, \ldots, \alpha_m$ are algebraically independent over K.

To prove the theorem we need the following lemma which is proved in Koblitz [1].
Lemma (Koblitz [1], p. 70). Let \(f(X) \in \mathbb{C}_p[X] \) have degree \(n \),
\[
f(X) = a_nX^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0.
\]
Suppose that \(f(X) \) has no multiple root. Then there exists a positive constant \(c \) such that if \(g(X) = \sum_{i=0}^{n} b_iX^i \in \mathbb{C}_p[X] \) has degree \(n \), and if \(\max_{0 \leq i \leq n} |a_i - b_i|_p \) is sufficiently small, then for every root \(\beta \) of \(g(X) \) there is precisely one root \(\alpha \) of \(f(X) \) such that
\[
|\alpha - \beta|_p \leq \max_{1 \leq i \leq n} |a_i - b_i|_p.
\]

Proof of theorem. Suppose that \(\alpha_1, \ldots, \alpha_m \) are algebraically dependent over \(K \). Then there exists a polynomial \(f(X) \) of degree \(n \) with coefficients in \(K[\alpha_1, \ldots, \alpha_{m-1}] \),
\[
f(X) = Q_n(\alpha_1, \ldots, \alpha_{m-1})X^n + \cdots + Q_0(\alpha_1, \ldots, \alpha_{m-1})
\]
such that \(f(\alpha_m) = 0 \) and \(f(X) \) has no multiple root. If \(\sigma \in S_k \), then
\[
|Q_i(\alpha_1^\sigma, \ldots, \alpha_{m-1}^\sigma) - Q_i(\alpha_1, \ldots, \alpha_{m-1})|_p
\leq \max\{|Q_i(\alpha_1^\sigma, \ldots, \alpha_{m-1}^\sigma) - Q_i(\beta_1^k, \ldots, \beta_{m-1,k})|_p,
|Q_i(\beta_1^k, \ldots, \beta_{m-1,k}) - Q_i(\alpha_1, \ldots, \alpha_{m})|_p\}
\leq c_1 \max_{1 \leq i \leq m-1} |\alpha_i - \beta_{ik}|_p,
\]
where \(c_1 \) is a positive constant. If \(k \) is sufficiently large, then \(|S_k| > n \) and by the lemma, there exists a root \(\alpha \) of \(f(X) \) and two distinct elements \(\sigma, \tau \) of \(S_k \) such that
\[
|\alpha - \alpha_m^\sigma|_p, |\alpha - \alpha_m^\tau|_p \leq c_2 \max_{1 \leq i \leq m-1} |\alpha_i - \beta_{ik}|_p,
\]
where \(c_2 \) is a positive constant, and so
\[
\min_{\sigma, \tau \in S_k} |\alpha_m^\sigma - \alpha_m^\tau|_p \leq c_2 \max_{1 \leq i \leq m-1} |\alpha_i - \beta_{ik}|_p.
\]
This contradicts condition (2) and the theorem is proved.

It is well known that every element \(\alpha \) of \(\mathbb{C}^{\text{unram}}_p \) is uniquely represented as \(\alpha = \sum_{n \geq q} \zeta np^n \) where \(\zeta \in W \) and \(q \in \mathbb{Z} \). The number \(\alpha \) is transcendental over \(\mathbb{Q}_p \) if and only if the extension degree \([\mathbb{Q}_p(\zeta^n) : \mathbb{Q}_p] \), \(n \geq q \), is unbounded. By using the theorem, we obtain a set of cardinality \(2^{\aleph_0} \) whose elements are in \(\mathbb{C}^{\text{unram}}_p \) and algebraically independent over \(\mathbb{Q}_p \).

Example 1. Let \(\zeta(n) \) be a primitive \(n \) th root of unity for every natural number \(n \). Let \(P \) be the set of all prime numbers. Then the numbers
\[
\sum_{n=1}^{\infty} \zeta(l^{\lambda n})p^n, \quad (l \in P - \{p\}, \lambda \in \mathbb{R}^+)
\]
are algebraically independent over \(\mathbb{Q}_p \).
Proof. Let \(l_1, \ldots, l_s \in P - \{p\} \) and \(K \) be the \(p \)-adic closure of \(\mathbb{Q}_p(\{\zeta(l_i^n)\}_{1 \leq i \leq s, n \geq 0}) \). Let \(l \in P - \{p, l_1, \ldots, l_s\} \) and \(0 < \lambda_1 < \cdots < \lambda_m \). Put
\[
\alpha_i = \sum_{n=0}^{\infty} \zeta(l_i^{\lambda_n}) p^n, \quad 1 \leq i \leq m.
\]
It is enough to prove that \(\alpha_1, \ldots, \alpha_m \) are algebraically independent over \(K \). We prove it by induction on \(m \). Assume that \(\alpha_1, \ldots, \alpha_{m-1} \) are algebraically independent over \(K \). Put
\[
\beta_{ik} = \sum_{n=1}^{k + \lfloor \log k \rfloor} \zeta(l_i^{\lambda_n}) p^n, \quad 1 \leq i \leq m - 1, \ k \geq 1,
\]
and
\[
d_k = [K(\zeta(l_1^{\lambda_m k})) : K(\zeta(l_1^{\lambda_{m-1}(k + \lfloor \log k \rfloor)))]].
\]
Then
\[
|\alpha_i - \beta_{ik}|_p = p^{-k - \lfloor \log k \rfloor - 1}
\]
and \(\lim_{k \to \infty} d_k = \infty \). Let \(S_k \) be a set of \(d_k \) isomorphisms of \(C_p \) which is obtained by extending \(\text{Gal}(K(\zeta(l_1^{\lambda_m k}))/K(\zeta(l_1^{\lambda_{m-1}(k + \lfloor \log k \rfloor}))). \) Then
\[
\min_{\sigma, \tau \in S_k} |\alpha_m^\sigma - \alpha_m^\tau|_p \geq p^{-k}.
\]
Hence by the theorem, \(\alpha_1, \ldots, \alpha_m \) are algebraically independent over \(K \).

In a similar way, we obtain a set of cardinality \(2^{\aleph_0} \) whose elements are in \(C_p \) and algebraically independent over \(C_p^{\text{unram}} \).

Example 2. The numbers
\[
\sum_{n=1}^{\infty} p^{n+\lambda n}, \quad (l \in P - \{p\}, \ \lambda \in \mathbb{R}^+)
\]
are algebraically independent over \(C_p^{\text{unram}} \).

References

Nara Women's University, Department of Mathematics, Kita-Uoya Nishimachi, Nara 630, Japan