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Abstract. The existence of lim„_oo \\f ("'||p     for an arbitrary function f(x) 6

C°°(R) such that f^(x) e L"(R), « = 0,1,...    (l<P<oo) and the con-

crete calculation of lim „—coll/ (B'|^" are shown.

Theorem 1. Let 1 < p < oo and f(x) G C°°(R) such that f {n)(x) G LP(R),

n = 0,1, ... . Then there always exists the limit

df=lim\\f{X'n>
J        n—>oo r

and moreover

df = of = sup{|£|:£ G supp/(0},

where the last equality is the definition of <t, and f(¿¡) is the Fourier transform

of the function f(x).*

Proof. We shall begin by showing that there exists the limit

(,) ¿/-Jtall/'T"-
Without loss of generality we may assume that  ||/||   = 1 .   Then using the

Kolmogoroff-Stein theorem [1, 2], we have

\\fik%<W2)n\\f{%,       0<k<n,

for any « = 2,3,...,  and hence

(2) MW\\]!k<(*ml'k\\fWC.       0<k<n.

By (2) it follows that

ll/(XA'<(*/2riimll/(T"
n—*oo
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for any k = 1,2, ... ; therefore

(3) ^\\flkX,k<M\\fwC-

Equation (1) is immediate from (3).

Further, we shall prove that df = af. We first observe that

(4) df < af.

It is enough to show (4) for af < oo. Then using / e S*' (this follows from

/ e LP(R) ) and the well-known Paley-Wiener-Schwartz theorem, we obtain that

/ is an analytic function of exponential type < af. Hence by the Bernstein-

Nikolsky inequality [3, p. 115] it follows that

ii/(n)iip<a;ii/iip,    « = o,i,...,

and (4) is an immediate consequence of the last inequalities.

Finally, we claim that df>af. We divide the proof into two cases.

Case 1.   p = oo.   Assume the contrary, that df<af.   Then there exist

numbers M < oo, a < af such that

Wf^W^^Mo",        « = 0,1,....

Therefore, using the inverse theorem of Bernstein we have that / is an ana-

lytic function of exponential type < o < oo.  Consequently, it follows from

Schwartz's theorem [3, p. 110] that supp/(<j[) c {£: |£| < a} . This contradicts

the assumption that o < af.

Case 2.   1 < p < oo. Let

f\/k
(5) fk(x) = k f(x + t)dt,       k=l,2,....

Jo

Then by Jensen's inequality we obtain

\f[k\x)\p<k [[/k\f{n)(x + t)\pdt,        Ac =1,2,...,
./o

for any « = 0,1,...; therefore,

(6) ll/Tlloo<*'/P|l/('\>        « = 0,1,... ¿ = 1,2,....

On the other hand, Case 1 shows that

(7) of = lim \\fln)\\l/",       k= 1,2,... .

Combining (6) and (7) yields

^Äll/^llf =¿/>       k = l,2,....
Consequently, to complete the proof it remains to show that

o r < lim a f
) — ,-    h

A:—»oo
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and therefore the problem is now reduced to proving that

(8) |i| < lim afk
k—>oo

for any point Ç G supp/(¿;).

Assume the contrary, that (8) is not satisfied. Then there exist a point

£0 G supp/(£), a number e0 > 0, and a subsequence {km} (for simplicity

of notation we assume that <^0>0, km = m , m = 1,2, ... ) such that

(9) afm < <jf0 -2e0,       m = 1,2, ... .

On the other hand, it is well known that

(10) II/(*+jO-/(*)II,-o,      |y|-0.

It obviously follows from (5) and (10) that

ll/*-/1l,.->0,        ¿-oo;

therefore, fk converges weakly to / in S*', and therefore fk also converges

weakly to / in Sf'.

Now we choose a function tp(x) G CfJ°(R) suchthat (f,q>) 7^ 0, supptp(x) c

[£0 - e0 ,£0 + £0]. Then it follows readily from fm —> / weakly in S9' and (9)

that

0=(fm,<p)^(f,<p)¿0,       m->œ.

We thus arrive at a contradiction. The proof is complete.

We close this paper with the following

Theorem 2. Suppose that f(x) G C°°(R) is an arbitrary 2n-periodic function

and 1 < p < 00. Then there exists the limit

df=lim\\\fw\\\lJn,
J       n—>oo v

and moreover

df = af = sap{\k\:k esupp/(£)},

where ||| • |||    is the Lp(0,2n)-norm.

Proof. Representing the function f(x) by its Fourier series, we have

00

f(x) =   J2 /*exp(/fcx),
k=—00

where

Therefore,

fk = (2n)  X(f,exp(-ikx)),       k = 0,±l,...

fln)M=   J2 fk(ik)"exp(ikx),       « = 0,1,....
k =—00
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Hence, in view of the Holder inequality,

\fkkn\ = (2n)  x\(f{n),exp(-ikx))\

<{2nyXIP\\\f(n)\\\p,

where « = 0,l,...;/c = 0,±l,....

Consequently,

"l1/" _ 17,1 ^   Uw,   III/" ("»III1/«(11) lim|/fcr|"" = \k\< lim HI/
"^°° «^oo

for any index ¿ such that fk^0.

Using

/(£)= £ /*<*« + *)
& = — oo

and (11), we have

(12) af< lim|||/(n)|||y".
n—»oo

Further, we show that

(n) Mlll/'X'"^/-
n—»oo

It is enough to prove (13) for ay < oo. Then by the Paley-Wiener-Schwartz

theorem it follows that / is an analytic function of exponential type < a,.

Hence, it follows from the inequality of Bernstein and Nikolsky that

\\\f{n)\\\p< °f\\\f\\\p,      " = 0,1,...,

and (13) is an immediate consequence of the last inequalities.

Combining (12) and (13) yields

i-        in /• (")iii'/" T--  in y (i)i|il/n
lim III/1 'III,'   =1™ III/    HI/   = °r

n—>oo "    °°

The theorem is proved.
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