Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A property of infinitely differentiable functions

Author: Ha Huy Bang
Journal: Proc. Amer. Math. Soc. 108 (1990), 73-76
MSC: Primary 26E10
MathSciNet review: 1024259
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The existence of $ {\lim _{n \to \infty }}\vert\vert{f^{(n)}}\vert\vert _p^{1/n}$ for an arbitrary function $ f(x) \in {C^\infty }({\mathbf{R}})$ such that $ {f^{\left( n \right)}}(x) \in {L^p}({\mathbf{R}}),n = 0,1, \ldots (1 \leq p \leq \infty )$ and the concrete calculation of $ {\lim _{n \to \infty }}\vert\vert{f^{(n)}}\vert\vert _p^{1/n}$ are shown.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26E10

Retrieve articles in all journals with MSC: 26E10

Additional Information

PII: S 0002-9939(1990)1024259-9
Article copyright: © Copyright 1990 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia