Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the harmonic maps from $ {\bf R}\sp 2$ into $ H\sp 2$


Author: Jun Min Lin
Journal: Proc. Amer. Math. Soc. 108 (1990), 521-527
MSC: Primary 58E20; Secondary 30C60, 35Q99
MathSciNet review: 975649
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove that normalized harmonic maps from $ {{\mathbf{R}}^2}$ or $ {{\mathbf{R}}^2}\backslash \{ 0\} $ into $ {H^2}$ are just geodesies on $ {H^2}$ and that the quasiconformal harmonic maps from $ {{\mathbf{R}}^2}$ into $ {H^2}$ are constant maps. We prove also that the only solution to $ \Delta \alpha = \sinh \alpha \,$ on $ {{\mathbf{R}}^2}\backslash \{ 0\} $ is the zero solution.


References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR 510197
  • [2] Lars V. Ahlfors, Lectures on quasiconformal mappings, Manuscript prepared with the assistance of Clifford J. Earle, Jr. Van Nostrand Mathematical Studies, No. 10, D. Van Nostrand Co., Inc., Toronto, Ont.-New York-London, 1966. MR 0200442
  • [3] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68. MR 495450, 10.1112/blms/10.1.1
  • [4] James Eells and Luc Lemaire, Selected topics in harmonic maps, CBMS Regional Conference Series in Mathematics, vol. 50, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1983. MR 703510
  • [5] James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 0164306
  • [6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg, New York, Springer, 1982.
  • [7] He Sheng Hu, sine-Laplace equation, sinh-Laplace equation and harmonic maps, Manuscripta Math. 40 (1982), no. 2-3, 205–216. MR 683039, 10.1007/BF01174876
  • [8] K. Pohlmeyer, Integrable Hamiltonian systems and interactions through quadratic constraints, Comm. Math. Phys. 46 (1976), no. 3, 207–221. MR 0408535
  • [9] Juan Luis Vázquez and Laurent Véron, Singularities of elliptic equations with an exponential nonlinearity, Math. Ann. 269 (1984), no. 1, 119–135. MR 756780, 10.1007/BF01456000

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58E20, 30C60, 35Q99

Retrieve articles in all journals with MSC: 58E20, 30C60, 35Q99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-0975649-1
Article copyright: © Copyright 1990 American Mathematical Society