Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Harmonic functions having no tangential limits

Author: Hiroaki Aikawa
Journal: Proc. Amer. Math. Soc. 108 (1990), 457-464
MSC: Primary 31A20; Secondary 30D40, 30D55
MathSciNet review: 990410
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {C_0}$ be a tangential curve in $ D = \left\{ {\vert z\vert < 1} \right\}$ which ends at 1 and let $ {C_\theta }$ be its rotation about the origin through an angle $ \theta $. We construct a bounded harmonic function in $ D$ which fails to have limits along $ {C_\theta }$ for all $ \theta ,0 \leq \theta \leq 2\pi $.

References [Enhancements On Off] (What's this?)

  • [1] D. A. Brannan and J. G. Clunie, Aspects of contemporary complex analysis, Academic Press, London, 1980. MR 623462 (82f:30001)
  • [2] F. E. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge University Press, London, 1966. MR 0231999 (38:325)
  • [3] J. E. Littlewood, On a theorem of Fatou, J. London Math. Soc. 2 (1927), 172-176.
  • [4] A. J. Lohwater and G. Piranian, The boundary behavior of functions analytic in a disk, Ann. Acad. Sci. Fenn. Ser. A I, no. 239 (1957). MR 0091342 (19:950c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31A20, 30D40, 30D55

Retrieve articles in all journals with MSC: 31A20, 30D40, 30D55

Additional Information

Keywords: Fatou theorem, harmonic functions, tangential limits
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society