SOME PROPERTIES OF k-SEMISTRATIFIABLE SPACES

T. MIZOKAMI

(Communicated by Dennis Burke)

Abstract. We study spaces admitting semistratification and k-semistratifications with (CF) property. The class of k-semistratifiable spaces with (CF) property lies between the class of Lašnev spaces and that of k-semistratifiable spaces, and really differs from the classes of stratifiable spaces and N-spaces.

1. Introduction

All spaces are assumed to be regular Hausdorff topological spaces. The letter τ denotes the topology of a space X. We denote by the letter ω the set of all positive integers.

In his paper [8], Lutzer introduced the class of k-semistratifiable spaces, which lies between the class of stratifiable spaces in the sense of Borges [1] and Ceder [2] and the class of semistratifiable spaces introduced by Michael and studied by Creede. The class of σ-spaces introduced by Okuyama lies between that of stratifiable spaces and that of semistratifiable spaces. In this paper, we consider the limited classes of k-semistratifiable and semistratifiable spaces with (CF) property defined below. We give a few characterizations of Lašnev spaces in terms of k-semistratifiable spaces and CF families which are introduced here.

Throughout this paper, σ-spaces are spaces with a σ-discrete network or equivalently, σ-closure-preserving network, and N-spaces are spaces with a σ-locally finite k-network. Stratifiable spaces are spaces with the stratification. As for the definition of stratifications, refer to Borges [1].

2. k-SEMISTRATIFIABLE SPACES WITH (CF) PROPERTY

We state the original definition of k-semistratifiable spaces.

Definition 1 (Lutzer [8]). A space X is called a k-semistratifiable space if there exists a function $S: \omega \times \tau \rightarrow \{\text{closed subsets of } X\}$ such that:

(a) For each $U \in \tau$, $U = \bigcup\{S(n, U) : n \in \omega\}$.
(b) If $U_1, V \in \tau$ and $U \subseteq V$, then $S(m, U) \subseteq S(m, V)$ for each m.
(c) If $C \subset U \in \tau$ with C compact, then $C \subset S(m, U)$ for some m. (We call S a k-semistratification of X.)

Definition 2 ([10, Definition 3.1]). A family \mathcal{U} of subsets of a space X is called finite on compact subsets of X, briefly CF in X, if \mathcal{U}/K is a finite family for any compact subsets K of X.

Definition 3. A semistratification or k-semistratification S of a space X is called to have (CF) property if the following condition (CF) is satisfied:

[(CF) For each $n \in \omega$, \{S\(n, U\): $U \in \tau$\} is CF in X.]

A space having S with (CF) property is called a semistratifiable or a k-semistratifiable space with (CF) property, respectively.

Theorem 1. If a space X has a σ-HCP (= hereditarily closure-preserving) k-network, then X is a k-semistratifiable space with (CF) property.

Proof. Let $\bigcup\{\mathcal{H}_n: n \in \omega\}$ be a k-network for X, where, for each n, $\mathcal{H}_n \subset \mathcal{H}_{n+1}$ and \mathcal{H}_n is an HCP family of closed subsets of X. For each $(n, U) \in \omega \times \tau$, let

$$S(n, U) = \bigcup\{H \in \mathcal{H}_n: H \subset U\}.$$

Then it is easily seen from [10, Proposition 3.2] that S is a k-semistratification with (CF) property.

Example 1. There exists a stratifiable, k-semistratifiable space with (CF) property, but does not have a σ-HCP k-network.

Proof. Let Y be a non-metrizable Lašnev space which has no σ-locally finite k-network. (For example, let Y be the quotient space obtained from $\bigoplus\{S_\alpha: \alpha < \omega_1\}$ by identifying all the limit points, where each S_α is the convergent sequence with its limit point.) Then by [6] the product space $X = Y \times [0, 1]$ has no σ-HCP k-network. X is obviously a stratifiable space. By Theorem 5, stated later, X is a k-semistratifiable space with (CF) property.

Theorem 2. For a space X, the following are equivalent:

1. X is a Lašnev space.
2. X is a Fréchet, k-semistratifiable space with (CF) property.
3. X is a Fréchet space which has a σ-CF pseudobase.

Proof. (1) \Rightarrow (2) follows from [3] and Theorem 1.

(2) \Rightarrow (3). Let S be the k-semistratification of X with (CF) property. Then

$$\bigcup\{S(n, U): U \in \tau\}: n \in \omega\}$$

is a σ-CF pseudobase of X.

(3) \Rightarrow (1) follows from [10, Theorem 4.1, (9)].

Corollary. A space X is metrizable if and only if X is a first countable, k-semistratifiable space with (CF) property.

We notice that a Lašnev space cannot be characterized to be a Fréchet space with a σ-HCP "pseudobase" [5]. For the next example, we prepare a lemma.
Lemma. If a space \(X \) has a \(\sigma \)-HCP \(k \)-network \(\mathcal{H} \) of closed subsets of \(X \), then \(X = X_1 \cup X_2 \), where \(X_1 \) is a \(\sigma \)-discrete closed subspace and \(X_2 \) is an \(\aleph \)-space such that for each \(p \in X_2 \), \(\mathcal{H} \) is \(\sigma \)-locally finite at \(p \) in \(X \).

Proof. Let \(\mathcal{H} = \bigcup \{ \mathcal{H}_n : n \in \omega \} \), where for each \(n \), \(\mathcal{H}_n \subset \mathcal{H}_{n+1} \) and \(\mathcal{H}_n \) is an HCP family of closed subsets of \(X \). Let

\[
X_1 = \{ p \in X : \bigcap \{ H \in \mathcal{H}_n : p \in H \} \text{ is a finite subset for some } n \}.
\]

Then by the same argument as in [11, Theorem 3.6], we can show that \(X_1 \) is a countable union of discrete closed subsets of \(X \) and \(X_2 = X - X_1 \) has the required property.

Example 2. There exists a stratifiable space which has no \(\sigma \)-HCP \(k \)-network.

Proof. For each \(\alpha < \omega_1 \), let \(T_\alpha \) be the copy of the subspace \(T = \{(x, y) : 0 < x, y \leq 1\} \) of \(\mathbb{R}^2 \) and \(f_\alpha : T \to T_\alpha \) its homeomorphism. Let \(X \) be the quotient space obtained from \(\bigoplus \{ T_\alpha : \alpha < \omega_1 \} \) by identifying \(\{ f_\alpha((x,0)) : \alpha < \omega_1 \} \) for each \(x \) with \(0 \leq x \leq 1 \). Since \(X \) is dominated by metric spaces, \(X \) is a stratifiable space [1, Theorem 7.2]. If \(X \) has a \(\sigma \)-HCP \(k \)-network \(\mathcal{H} \), then by the above, there exists a point \(p = f(f_\alpha((x,0))) \in X \) such that \(\mathcal{H} \) is \(\sigma \)-locally finite at \(p \) in \(X \), where \(f : \bigoplus T_\alpha \to X \) is the quotient mapping. But, by [7, Remark 2] this is a contradiction.

Example 3. There exists a \(k \)-semistratifiable space which does not have \(\text{(CF)} \) property.

Proof. Let \(X \) be the same space as in [2, Example 9.2]. Then \(X \) is a first countable, non-metrizable stratifiable space. By the Corollary to Theorem 2, \(X \) has no \(k \)-semistratification with \(\text{(CF)} \) property.

From the argument as in Theorem 1, the following is easily seen.

Theorem 3. Any \(\sigma \)-space is a semistratifiable space with \(\text{(CF)} \) property.

The converse is not known. However, we have a partial answer to it.

Theorem 4. If a space \(X \) is a Fréchet, semistratifiable space with \(\text{(CF)} \) property, then \(X \) is a \(\sigma \)-space.

Proof. It is easy to see that \(X \) has a \(\sigma \)-CF network \(\mathcal{H} \). By [10, Proposition 3.3], \(\mathcal{H} \) is a \(\sigma \)-closure-preserving network. Hence \(X \) is a \(\sigma \)-space.

The following example shows that any semistratifiable space need not have \(\text{(CF)} \) property.

Example 4. There exists a first countable, semistratifiable space which is not a \(\sigma \)-space.

Proof. Let \(X \) be the space in [4, Example 9.10]. Since \(X \) is not a \(\sigma \)-space, by Theorem 4, \(X \) is not a semistratifiable space with \(\text{(CF)} \) property.
Theorem 5. If a space X is embedded into a countable product of Lašnev spaces, then X is a k-semistratifiable space with (CF) property.

Proof. By the same method as in [9, Lemma 5.1 and Proposition 6.1] and by [10, Proposition 3.3], we can show that X has a σ-closure-preserving, CF family $\bigcup_n \mathcal{H}_n$ of closed subsets of X, which forms a k-network for X. For each $(n, U) \in \omega \times \tau$, let

$$S(n, U) = \bigcup \left\{ H \in \bigcup_{i \leq n} \mathcal{H}_i : H \subset U \right\}.$$

Then S is a k-semistratification with (CF) property.

The other known implications are indicated by the diagram below. The remaining proofs are easy and well-known, and therefore they are omitted.

References

Joetsu University of Education, Joetsu, Niigata 943, Japan