EMBEDDING SUBSPACES OF L_1 INTO l_1^N

MICHEL TALAGRAND

(Communicated by William J. Davis)

Abstract. We simplify techniques of Schechtman, Bourgain, Lindenstrauss, Milman, to prove the following. If X is an n-dimensional subspace of L_1, there exists a subspace Y of l_1^N such that $d(X,Y) \leq 1 + \varepsilon$ whenever $N \geq CK(X)^2e^{-2n}$, where $K(X)$ is the K-convexity constant of X, and where C is a universal constant.

1. Introduction

Consider the following problem.

(*) Given an n-dimensional subspace X of $L_1 = L_1(0,1)$ and $\varepsilon > 0$, what is the smallest $N = N(X,\varepsilon)$ such that there is a subspace Y of l_1^N with $d(X,Y) \leq 1 + \varepsilon$?

This question was considered in [3] and [4] for $X = l_2^n$, and in [6] for $X = l_2^n$. A breakthrough was made in [13] by G. Schechtman, who, using empirical distributions proved that for every subspace X of $L_1(0,1)$ of dimension n, and every $0 < \varepsilon < \frac{1}{2}$,

$$N(X,\varepsilon) \leq Ce^{-1}\log (\varepsilon^{-1})n^2.$$

Here, as in the sequel, C denotes a universal constant, that may vary at each occurrence. Schechtman's method was refined, and combined with facts from Banach space theory by Bourgain, Lindenstrauss, Milman [1] to yield a bound of $N(X,\varepsilon)$ that is nearly linear in n. In particular, they proved that for any n-dimensional subspace X of L_1,

$$N(X,\varepsilon) \leq Ce^{-2}\log(ne^{-1})(\log n)^2n.$$

Moreover, they showed that if $1 < p \leq 2$ and if $T_p(X)$ denote the type p constant of X, we have, for any $\tau > 0$

$$N(X,\varepsilon) \leq c(\tau)ne^{-2}(\log(T_p(X) + 1))^{1/2}(p - 1)^{-3-\tau}(\log(T_p(X)(\varepsilon(p - 1))))^{5/2+\tau}.$$
We denote by $K(X)$ the K-convexity constant of X (see [11]), and we prove
the following, where ε_0 is a universal constant.

Theorem. For any n-dimensional subspace X of L^1, and $0 < \varepsilon \leq \varepsilon_0$, we have

\[N(X, \varepsilon) \leq CK(X)^2 \varepsilon^{-2n}. \]

It has been proved by Pisier [12] that for

\[X \subset L^1, \quad n = \dim X, \]

we have

\[K(X) \leq C(\log n)^{1/2}. \]

Thus (4) improves on (2). It is proved in [1] that

\[K(X)^2 \leq C \log(T_p(X) + 1)/(p - 1), \]

and thus (4) improves on (3). We do not know if the factor $K(X)$ is necessary
in (4).

2. The random choice procedure

Central to our approach is a random choice argument, in spirit close to the
empirical distribution method, but which avoids many of the technical com-
plifications of this method. Consider a subspace X of dimension n of l^M_1.
To embed X into l^M_1 where M' is of order $M/2$ we will, for each coordi-
nate, flip a coin and disregard the coordinate if "head" comes up. More
formally, consider a sequence $\varepsilon = (\varepsilon_i)_{i \leq M}$ of Bernoulli (or Rademacher) random
variables. That is, the sequence is independent identically distributed (i.i.d.)
and $P(\varepsilon_i = 1) = P(\varepsilon_i = -1) = \frac{1}{2}$. Consider the random diagonal operator
$U_\varepsilon: l^M_1 \to l^M_1$ given by $U_\varepsilon((x_i)_{i \leq M}) = ((1 + \varepsilon_i)x_i)_{i \leq M}$. We will give conditions
under which U_ε is, with large probability, almost an isometry when restricted to
X. We note that $U_\varepsilon(l^N_1)$ is isometric to $l^{M'}_1$, where $M' = \text{card}\{i \leq M; \varepsilon_i = 1\}$, and, with probability $\geq \frac{1}{2}$, we have $M' \leq M/2$.

For $x \in l^M_1$, consider the random variable $Z_x = \|U_\varepsilon(x)\| - \|x\|$, and let
$A = \sup_{x \in X, \|x\| \leq 1} |Z_x|$. The restriction T_ε of U_ε to X satisfies

\[\|T_\varepsilon\| \leq 1 + A, \quad \|T_\varepsilon^{-1}\| \leq 1/(1 - A), \]

so that when $A \leq \frac{1}{2}$ we have $d(X, U_\varepsilon(X)) \leq 1 + 3A$.

For $x = (x_i)_{i \leq M}$, we have

\[Z_x = \sum_{i \leq M} |(1 + \varepsilon_i)x_i| - \sum_{i \leq M} |x_i| \]

\[= \sum_{i \leq M} (1 + \varepsilon_i)|x_i| - \sum_{i \leq M} |x_i| = \sum_{i \leq M} \varepsilon_i|x_i| \]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
so that

\[A = \sup_{x \in X, \|x\|_1 \leq 1} \left| \sum_{i \leq M} \varepsilon_i |x_i| \right|. \]

It follows by the comparison theorem for Rademacher processes ([7], Proposition 1) that

\[EA \leq 2E \sup_{x \in X, \|x\|_1 \leq 1} \left| \sum_{i \leq M} \varepsilon_i x_i \right|. \]

Consider a sequence \((g_i)_{i \leq N}\) of i.i.d. \(N(0,1)\) random variables. Then by the "contraction principle" as e.g. in [5], we have

\[EA \leq CE \sup_{x \in X, \|x\|_1 \leq 1} \left| \sum_{i \leq M} g_i x_i \right|. \]

Since \(P(A \leq 3EA) \geq \frac{1}{2}\) and

\[P(\text{card } M' \leq \frac{1}{2} \text{ card } M) \geq \frac{1}{2}, \]

we have shown the following.

Proposition 1. There exists two universal constants \(\alpha, C\), with the following property. If \(X\) is a subspace of \(l_1^M\) and

\[H := E \sup_{x \in X, \|x\|_1 \leq 1} \left| \sum_{i \leq M} g_i x_i \right| < \alpha \]

then there exists \(M' \leq M/2\) and a subspace \(Y\) of \(l_1^{M'}\) such that \(d(X, Y) \leq 1 + CH\).

Remark. Instead of using the comparison theorem for Rademacher processes (see [8] for a very simple proof) one can use above the usual comparison results for Gaussian processes, which, however, lie quite deeper.

3. Proof of the theorem

In order to successfully use Proposition 1, one must ensure that

\[H = E \sup_{x \in X, \|x\|_1 \leq 1} \left| \sum_{i \leq M} g_i x_i \right| \]

is small. Let us denote by \(\langle \cdot, \cdot \rangle\) the scalar product of \(l_2^M\). We have

\[H = \int \sup_{x \in X, \|x\|_1 \leq 1} \langle x, y \rangle d\gamma_M(y) \]
where \(\gamma_M \) is the law of \(\sum_{i \leq M} g_i e_i \), and where \((e_i)_{i \leq M} \) is the canonical basis of \(l_2^M \). Since \(\gamma_M \) is the law of \(\sum_{i \leq M} g_i y_i \) for any orthonormal basis \(l_2^M \), we see that if \(y_1, \ldots, y_n \) is an orthonormal basis of \(X \subset l_2^M \) we have

\[
H = E \sup_{x \in X, \|x\|_2 \leq 1} \left\langle x, \sum_{i \leq n} g_i y_i \right\rangle.
\]

The following proposition is essentially a juxtaposition of a lemma of Lewis [9] and a lemma of Davis–Milman–Tomczak [2] which were also used in [1].

Proposition 2. Consider a subspace \(X \) of \(l_1^M \) of dimension \(n \). Then there exists \(M' < 3M/2 \) and a subspace \(Y \) of \(l_1^{M'} \) isometric to \(X \) such that

\[
\sum_{i \leq M} g_i x_i \leq CK(X) \left(\frac{n}{M} \right)^{1/2}.
\]

Proof. Consider \(D = \{-1, 1\}^N \), provided with the Haar measure \(\mu \). For a Banach space \(X \), the \(K \)-convexity constant \(K(X) \) is the norm of the natural projection from \(L_2(X) = L_2(D, \mu, X) \) onto the span of the functions \(\sum e_i x_i \), where \(e_i \) is the \(i \)th coordinate function on \(D \). Thus, if \(f \in L_2(X) \), we have

\[
\left\| \sum_{i \geq 1} e_i E(e_i f) \right\|_{L_2(X)} \leq K(X)\|f\|_{L_2(X)}.
\]

It has been observed by Tomczak–Jaegermann [14] that for any probability space \(\Omega \), if \(f \in L_2(X) = L_2(\Omega, X) \), we have

\[
(4.1) \quad \left\| \sum_{i \geq 1} g_i E(g_i f) \right\|_{L_2(X)} \leq K(X)\|f\|_{L_2(X)}
\]

where \(g_i \) is i.i.d. \(N(0, 1) \) on \(\Omega \).

As observed in [1], it is an immediate consequence of a result of Lewis [9] that for each \(n \)-dimensional subspace \(X \) of \(l_i^M \), there exists a probability measure \(\nu \) on \(\{1, \ldots, M\} \), a subspace \(Y \) of \(L_1(\nu) \) isometric to \(X \), and a basis \((\psi_j)_{j \leq n} \) of \(Y \), that is orthogonal in \(L_2(\nu) \), and that satisfies

\[
\sum_{j=1}^n \psi_j^2 = 1, \quad \|\psi_j\|_2 = n^{-1/2}.
\]

If we split each atom of \(\nu \) of mass \(a \geq 2/M \) in \([aM/2] + 1 \) equal pieces, we can assume that each atom of \(\nu \) has mass \(\leq 2/M \), and that \(\nu \) is now supported by \(\{1, \ldots, M'\} \) where \(M' \leq 3M/2 \). Also, we can assume that \(\nu(\{k\}) > 0 \) for \(k \leq M' \).

We denote by \(\langle \cdot, \cdot \rangle \) the scalar product in \(L_2(\nu) \). There exists

\[
f \in L_\infty(Y), \quad \|f\|_{L_\infty(Y)} \leq 1,
\]
such that
\[\sup_{x \in Y, \|x\|_1 \leq 1} \left\langle \sum_{j \leq n} g_j \psi_j, x \right\rangle = \left\langle \sum_{j \leq n} g_j \psi_j, f \right\rangle = \sum_{j \leq n} \langle \psi_j, g_j f \rangle. \]

Thus
\[E \sup_{x \in Y, \|x\|_1 \leq 1} \left\langle \sum_{j \leq n} g_j \psi_j, x \right\rangle = \sum_{j \leq n} \langle \psi_j, E(g_j f) \rangle. \]

By (4.1), setting \(x_j = E(g_j f) \), we have \(\| \sum g_j x_j \|_{L^2(Y)} \leq K(Y) \|f\|_{L^2(Y)} = K(X). \) We have
\[\left\| \sum_{j \leq n} g_j x_j \right\|_{L^2(X)}^2 = E \int \left(\sum_{j \leq n} g_j x_j(t) \right)^2 d\nu(t) = \int \left(\sum_{j \leq n} x_j^2(t) \right) d\nu(t). \]

Now, since \(\sum_{j \leq n} \psi_j^2 = 1 \)
\[\sum_{j \leq n} \langle \psi_j, x_j \rangle = \int \sum_{j \leq n} \psi_j(t) x_j(t) d\nu(t) \]
\[\leq \int \left(\sum_{j \leq n} x_j^2(t) \right)^{1/2} d\nu(t) \]
\[\leq \left\| \sum_{j \leq n} g_j x_j \right\|_{L^2(X)} \leq K(X). \]

For \(k \leq M' \), let
\[a_k = \nu(\{k\}), \quad v_k = 1_{\{k\}}, \]
so that \((a_k^{-1/2} v_k)_{k \leq M'} \) is an orthonormal basis of \(L^2(\nu) \). As observed earlier, we have
\[E \sup_{x \in Y, \|x\|_1 \leq 1} \left\langle \sum_{k \leq M'} g_k a_k^{-1/2} v_k, x \right\rangle = E \sup_{x \in Y, \|x\|_1 \leq 1} \left\langle \sum_{j \leq n} g_j n^{1/2} \psi_j, x \right\rangle \leq n^{1/2} K(X). \]

Consider now the isometry \(T: L_1(\nu) \to l_1^{M'} \) given by \(T(x) = \sum_{k \leq M'} e_k(v_k, x) \), where \((e_k) \) denotes the canonical basis of \(l_1^{M'} \). We have
\[E \sup_{x \in T(Y), \|x\|_1 \leq 1} \left\langle \sum_{k \leq M'} g_k e_k, x \right\rangle = E \sup_{x \in Y, \|x\|_1 \leq 1} \left\langle \sum_{k \leq M'} g_k v_k, x \right\rangle \]
\[= E \sup_{x \in Y, \|x\|_1 \leq 1} \left\langle \sum_{k \leq M'} g_k \frac{v_k}{\sqrt{a_k}} \sqrt{a_k}, x \right\rangle \]
\[\leq (\text{Max } a_k^{1/2}) E \sup_{x \in Y, \|x\|_1 \leq 1} \left\langle \sum_{k \leq M'} g_k a_k^{-1/2} v_k, x \right\rangle \]
\[\leq C(n/N)^{1/2} K(X). \]

by contraction and since \(a_k \leq 2/N \) for \(k \leq M' \). The proof is complete.
Successive applications of Propositions 2 and 1 yield the following:

Proposition 3. There exists two universal constants α, C, such that if X is a subspace of l_1^M of dimension n, for which $K(X)(n/M)^{1/2} \leq \alpha$, there exists $M' \leq 3M/4$ and a subspace Y of $l_1^{M'}$ for which $d(X, Y) \leq 1 + CK(X)(n/M)^{1/2}$.

To prove the theorem, we observe that given $\varepsilon > 0$, a subspace X of L_1 of finite dimension is always at distance $< 1 + \varepsilon$ of a subspace l_1^M for some M (however large). This can be seen in a number of ways, e.g. using the fact that $\|f - E^n(f)\|_1 \to 0$ where E^n denotes the conditional expectation with respect to the n th dyadic subalgebra. Thus, it suffices to prove the theorem for subspaces of l_1^N. In that case it follows from repeated applications of Proposition 3, once we observe that $K(Y) \leq d(X, Y)K(X)$.

4. Further comments

Also of interest is the problem, studied in particular in [1], of embedding a subspace X of $L_p\ (p > 1)$ of dimension n in l_1^N for small N. Using the random choice procedure described in §2, one is led to consider the random variable

$$Z_X = \|U_\xi(x)\|^p - \|x\|^p = \sum_{i \leq M} e_i |x_i|^p$$

and $A = \sup_{x \in X, \|x\|_p \leq 1} |Z_X|$. To apply the method of Proposition 1, we need to have information on the Gaussian process $V_X = \sum_{i \leq M} g_i |x_i|^p$. If one tries to deduce this information from information on the process $W_X = \sum_{i \leq M} g_i x_i$ using the standard comparison theorems one does not get the correct result, as these comparison theorems do not take into account that X is a subspace of small dimension. Thus we seem to have no choice other than evaluating the expectation of A using the canonical distance $\delta(x, y) = \sum_{i \leq M} (|x_i|^p - |y_i|^p)^{1/2}$ and entropy methods, i.e. Dudley’s theorem as e.g. in [10]. For that purpose we observe e.g. that for $\|x\|_p \leq 1, \|y\|_p \leq 1,$

we have

$$\delta(x, y) \leq C\|x - y\|_{p/(2-p)} \leq C\|x - y\|^{p/2}_{\infty} \quad \text{if} \ 1 \leq p \leq 2$$

$$\delta(x, y) \leq Cp(\max(\|x\|_{\infty}, \|y\|_{\infty}))^{(p-2)/2}\|x - y\|_{\infty} \quad \text{if} \ p \geq 2$$

and we use the entropy evaluations of [1].

While our approach in that case replaces (once the hard work on entropy evaluation has been done!) the computations of [1], Theorem 7.3 and Theorem 7.4 by an application of Dudley’s theorem, it does not even decrease the power.
of the $\log n$ term there, and thus it does not yield any real improvement. A similar comment applies to the results of [1], §8.

Acknowledgment

Thanks are due for useful comments to M. Ledoux, and also to W. Johnson and G. Schechtman who pointed out and repaired an error (by splitting the large atoms) in an earlier formulation of Proposition 2.

References

8. _____, Isoperimetry and processes in probability in a Banach space, (to be published by Springer-Verlag in the “Ergebnisse” series).

Equipe d’Analyse-Tour 46, E.R.A. associée au C.N.R.S. n° 754, Université Paris VI, 4 Pl. Jussieu, 75230 Paris Cedex 05, France

and

The Ohio State University, Department of Mathematics, 231 West 18th Avenue, Columbus, Ohio 43210

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use