Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embedding subspaces of $ L\sb 1$ into $ l\sp N\sb 1$


Author: Michel Talagrand
Journal: Proc. Amer. Math. Soc. 108 (1990), 363-369
MSC: Primary 46B25; Secondary 46E30
DOI: https://doi.org/10.1090/S0002-9939-1990-0994792-4
MathSciNet review: 994792
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We simplify techniques of Schechtman, Bourgain, Lindenstrauss, Milman, to prove the following. If $ X$ is an $ n$-dimensional subspace of $ {L_1}$, there exists a subspace $ Y$ of $ l_1^N$ such that $ d\left( {X,Y} \right) \leq 1 + \varepsilon $ whenever $ N \geq CK{\left( X \right)^2}{\varepsilon ^{ - 2}}n$, where $ K\left( X \right)$ is the $ K$-convexity constant of $ X$, and where $ C$ is a universal constant.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B25, 46E30

Retrieve articles in all journals with MSC: 46B25, 46E30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0994792-4
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society