Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A general chain rule for distributional derivatives


Authors: L. Ambrosio and G. Dal Maso
Journal: Proc. Amer. Math. Soc. 108 (1990), 691-702
MSC: Primary 26B30; Secondary 46F10, 49F22
MathSciNet review: 969514
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a general chain rule for the distribution derivatives of the composite function $ \upsilon (x) = f(u(x))$, where $ u:{{\mathbf{R}}^n} \to {{\mathbf{R}}^m}$ has bounded variation and $ f:{{\mathbf{R}}^m} \to {{\mathbf{R}}^k}$ is Lipschitz continuous.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26B30, 46F10, 49F22

Retrieve articles in all journals with MSC: 26B30, 46F10, 49F22


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-0969514-3
PII: S 0002-9939(1990)0969514-3
Article copyright: © Copyright 1990 American Mathematical Society