STARSHAPED UNIONS AND NONEMPTY INTERSECTIONS OF CONVEX SETS IN R^d

Marilyn Breen

Abstract. Let \mathcal{F} be a nonempty family of compact convex sets in R^d, $d \geq 1$. Then every subfamily of \mathcal{F} consisting of $d+1$ or fewer sets has a starshaped union if and only if $\cap\{G: G \in \mathcal{F}\} \neq \emptyset$.

1. Introduction

We begin with some definitions. Let S be a subset of R^d. For points x and y in S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. Set S is called starshaped if and only if there is some point p in S such that p sees via S each point of S, and the set of all such points p is the (convex) kernel of S.

A familiar theorem by Krasnosel'skii [4] states that for S a nonempty compact set in R^d, S is starshaped if and only if every $d+1$ points of S see via S a common point. In studying starshaped unions of sets, Kolodziejczyk [3] has proved that for \mathcal{F} a finite family of closed sets in R^d, if every $d+1$ members of \mathcal{F} have a starshaped union, then $\cup\{F: F \in \mathcal{F}\}$ is starshaped as well. In this paper, we examine the relationship between starshaped unions and nonempty intersections of compact convex sets in R^d to obtain the following Helly-type analogue: Let \mathcal{F} be a nonempty family of compact convex sets in R^d, $d \geq 1$. Then every subfamily of \mathcal{F} consisting of $d+1$ or fewer sets has a starshaped union if and only if $\cap\{G: G \in \mathcal{F}\} \neq \emptyset$. (Of course, when members of \mathcal{F} have a nonempty intersection, they will have a starshaped union as well.)

The proof is suggested by an argument of Klee [2].

Throughout the paper, $\text{conv} S$, $\text{int} S$, $\text{bdry} S$, and $\text{ker} S$ will denote the convex hull, interior, boundary, and kernel, respectively, for set S. For distinct points x and y, $L(x, y)$ will be the line they determine. The reader is referred...

The results

The following definition is needed.

Definition. Set A is said to surround set B in the k-flat F, $k \geq 1$, if and only if A contains a $(k - 1)$-sphere S such that B lies in the bounded component of $F \sim S$.

Our preliminary lemma is motivated by an argument of Klee [2].

Lemma 1. Let K_1, \ldots, K_l be nonempty compact convex sets in \mathbb{R}^d, $d \geq 1$, $l \geq 2$, with $\bigcap\{K_i: 1 \leq i \leq l\} = \emptyset$ and with $a_i \in \bigcap\{K_j: 1 \leq j \leq l, j \neq i\} \neq \emptyset$ for $1 \leq i \leq l$. Then there are two flats H and L of dimension $l - 1$ and $d - l + 1$, respectively, meeting in a single point, such that

1. $L \cap K_i = \emptyset$ and $a_i \in H$, $1 \leq i \leq l$, and
2. $H \cap (\bigcup\{K_i: 1 \leq i \leq l\})$ surrounds $H \cap L$ in H.

Proof. Clearly Helly's familiar theorem, together with the hypothesis of the lemma, imply that $2 \leq l \leq d + 1$. We proceed by induction on d. If $d = 1$, then $l = 2$, and it is easy to see that the lemma holds. For $d > 1$, assume the result is true for integers k, $1 \leq k \leq d$, to prove for d. Since $\bigcap\{K_i: 1 \leq i \leq l\} = \emptyset$, let H_0 be a hyperplane strictly separating the compact convex sets K_i and $\bigcap\{K_j: 2 \leq j \leq l\} \neq \emptyset$.

In case $l = 2$, let $H = L(a_1, a_2)$ and let $L = H_0$. If $l \geq 3$, choose $\{a'_i\} = [a_1, a_l] \cap H_0$, $2 \leq i \leq l$. Since $a'_i \in \bigcap\{K_j: j \neq 1, i\}$, every $l - 2$ sets from $\{K_l \cap H_0: 2 \leq i \leq l\}$ have a nonempty intersection. However, H_0 is disjoint from $\bigcap\{K_j: 2 \leq j \leq l\}$, so $\bigcap\{K_l \cap H_0: 2 \leq i \leq l\} = \emptyset$. Using our induction hypothesis in the $(d - 1)$-flat H_0, there exist flats H', L in H_0 having dimension $(l - 1) - 1 = l - 2$ and $(d - 1) - (l - 1) + 1 = d - l + 1$, respectively, meeting in a single point, such that

1. $L \cap K_i = \emptyset$ and $a'_i \in H'$, $2 \leq i \leq l$, and
2. $H' \cap (\bigcup\{K_i: 2 \leq i \leq l\})$ surrounds $H' \cap L$ in H'.

Finally, let H be the flat determined by H' and a_1. Clearly $a_i \in L(a_1, a'_l) \subseteq H$ for $2 \leq i \leq l$, and hence $a_i \in H$, $1 \leq i \leq l$. Moreover, since $\text{bdry conv}\{a_1, \ldots, a_l\} \subset H \cap (\bigcup\{K_i: 1 \leq i \leq l\})$, $H \cap (\bigcup\{K_i: 1 \leq i \leq l\})$ surrounds $H \cap L = H \cap L$ in H. This finishes the induction and completes the proof of the lemma.

Theorem. Let \mathcal{F} be a nonempty family of compact convex sets in \mathbb{R}^d, $d \geq 1$. Then every subfamily of \mathcal{F} consisting of $d + 1$ or fewer sets has a starshaped union if and only if $\bigcap\{G: G \text{ in } \mathcal{F}\} \neq \emptyset$.

Proof. Clearly when $\bigcap\{G: G \text{ in } \mathcal{F}\} \neq \emptyset$, then every subfamily of \mathcal{F} has a starshaped union whose kernel contains $\bigcap\{G: G \text{ in } \mathcal{F}\}$. Hence we need only establish the reverse implication.
Assume that every \(d + 1 \) or fewer sets in \(\mathcal{G} \) have a starshaped union, to show that \(\cap\{G: G \text{ in } \mathcal{G}\} \neq \emptyset \). Note that for arbitrary sets \(G_1 \) and \(G_2 \) in \(\mathcal{G} \), \(G_1 \cup G_2 \) is starshaped. Since both \(G_1 \) and \(G_2 \) are closed, this implies that \(G_1 \cap G_2 \neq \emptyset \), and thus every two members of \(\mathcal{G} \) intersect. By the familiar Helly theorem, it suffices to prove that every \(d + 1 \) or fewer members of \(\mathcal{G} \) have a nonempty intersection, \(2 \leq d \).

Suppose on the contrary that for some maximal integer \(l - 1 \), \(2 \leq l - 1 \leq d \), every \(l - 1 \) members of \(\mathcal{G} \) have a nonempty intersection but some \(l \) members of \(\mathcal{G} \) have an empty intersection. Say \(G_i \cap \cdots \cap G_l = \emptyset \) for \(G_i \) in \(\mathcal{G} \), \(1 \leq i \leq l \).

By Lemma 1, there exist flats \(H, L \) of dimension \(l - 1, d - l + 1 \), respectively, meeting in a single point, such that

1. \(L \cap G_i = \emptyset, \ 1 \leq i \leq l \), and
2. \(H \cap (\cup\{G_i: 1 \leq i \leq l\}) \) surrounds \(H \cap L \) in \(H \).

However, this contradicts the fact that \(\cup\{G_i: 1 \leq i \leq l\} \) is starshaped. Our supposition is false, and \(\cap\{G: G \text{ in } \mathcal{G}\} \neq \emptyset \), finishing the proof of the theorem.

Remark. It is interesting to observe that Theorem 1 holds without the requirement that members of \(\mathcal{G} \) be compact, provided \(\mathcal{G} \) is a finite family whose members are closed: In the proof, simply choose \(x \in \ker(\cup\{G_i: 1 \leq i \leq l\}) \neq \emptyset, \ a_i \in \cap\{G_j: 1 \leq j \leq l \ j \neq i\} \), and define \(T \equiv \text{conv}\{x, a_i: 1 \leq i \leq l\} \). Then apply Lemma 1 to \(\{T \cap G_i: 1 \leq i \leq l\} \). The finite version of Helly’s theorem completes the argument.

However, the theorem fails without the restriction that members of \(\mathcal{G} \) be closed, as the following easy example illustrates.

Example 1. Let \(s_1, \ldots, s_{d+1} \) be vertices of a \(d \)-simplex in \(R^d \), with \(w \in \text{int conv}\{s_1, \ldots, s_{d+1}\} \). For \(1 \leq i \leq d + 1 \), define

\[
S_i = \text{conv}\{w, s_j: 1 \leq j \leq d + 1, j \neq i\}
\]

and let \(T_i = S_i \sim \{w\} \). Every \(d \) (or fewer) of the sets \(T_1, S_2, \ldots, S_{d+1} \) intersect and hence have a starshaped union. Furthermore, \(T_1 \cup S_2 \cup \cdots \cup S_{d+1} = \text{conv}\{s_1, \ldots, s_{d+1}\} \) is convex and hence starshaped. However, \(T_1 \cap S_2 \cap \cdots \cap S_{d+1} = \emptyset \).

Acknowledgment

The author wishes to thank the referee for Lemma 1, which greatly simplifies and generalizes the proof of the theorem.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73019