Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fixed point theorems in product spaces


Author: Tadeusz Kuczumow
Journal: Proc. Amer. Math. Soc. 108 (1990), 727-729
MSC: Primary 47H10; Secondary 47H09
DOI: https://doi.org/10.1090/S0002-9939-1990-0991700-7
MathSciNet review: 991700
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ {K_1}$ and $ {K_2}$ are nonempty closed weakly compact subsets of Banach spaces and they have the generic fixed point property for nonexpansive mappings, then in the maximum norm $ {K_1} \times {K_2}$ has fixed point property for nonexpansive mappings.


References [Enhancements On Off] (What's this?)

  • [1] R. E. Bruck, Properties of fixed point sets of nonexpansive mappings in Banach spaces, Trans. Amer. Math. Soc. 179 (1973), 251-262. MR 0324491 (48:2843)
  • [2] A. Fora, A fixed point theorem for product spaces, Pacific J. Math. 99 (1982), 327-335. MR 658063 (83e:54042)
  • [3] W. A. Kirk, Fixed point theory for nonexpansive mappings, Fixed Point Theory (E. Fadell and G. Fournier, eds.), Lecture Notes in Math., no. 886, Springer-Verlag, New York, 1981, pp. 484-505. MR 643024 (83c:47076)
  • [4] -, Fixed point theory for nonexpansive mappings II, Fixed Points and Nonexpansive Mappings (R. C. Sine, ed.), Contemp. Math. 18 (1983), 121-140. MR 728596 (85a:47062)
  • [5] -, Nonexpansive mappings in product spaces, set-valued mappings and $ k$-uniform rotundity, Nonlinear Functional Analysis and its Applications (F. E. Browder, ed.), Amer. Math. Soc. Symp. Pure Math., Vol. 45, 1986, pp. 51-64. MR 843594 (87i:47068)
  • [6] -, Fixed points theorems in product spaces, Operator Equations and Fixed Points (S. P. Singh, V. M. Seghal, and J. H. W. Burry, eds.), Math. Sci. Res. Inst. Korea 1 (1986), 27-35.
  • [7] -, An iteration process for nonexpansive mappings with applications to fixed point theory in product spaces, Proc. Amer. Math. Soc. (to appear). MR 941325 (90a:47146)
  • [8] W. A. Kirk and C. Martinez, Nonexpansive and locally nonexpansive mappings in product spaces, Nonlinear Anal. 12 (1988), 719-725. MR 947884 (89h:47084)
  • [9] W. A. Kirk and Y. Sternfeld, The fixed point property for nonexpansive mappings in certain product spaces, Houston J. Math. 10 (1984), 207-214. MR 744905 (85j:47058)
  • [10] S. Nadler, Jr., Sequences of contractions and fixed points, Pacific J. Math. 27 (1968), 579-585. U.S. Reich, The fixed point property for nonexpansive mappings I, Amer. Math. Monthly 83 (1976), 226-228. MR 0240802 (39:2147)
  • [12] -, The fixed point property for nonexpansive mappings II, Amer. Math. Monthly 87 (1980), 292-294.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 47H09

Retrieve articles in all journals with MSC: 47H10, 47H09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0991700-7
Keywords: Nonexpansive mappings, nonexpansive retracts, fixed points
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society