Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A generalization of Brøndsted's results and its applications


Author: Noriko Mizoguchi
Journal: Proc. Amer. Math. Soc. 108 (1990), 707-714
MSC: Primary 47H99; Secondary 46A99, 47H10, 54H25
DOI: https://doi.org/10.1090/S0002-9939-1990-0991704-4
MathSciNet review: 991704
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We generalize Brøndsted's results in [2] and [3] in order to obtain uniform space versions of Caristi's fixed point theorem, Ekeland's variational principle and the drop theorem. Moreover, it is applied to weak convergence of random iterations.


References [Enhancements On Off] (What's this?)

  • [1] I. Amemiya and T. Ando, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239-244. MR 0187116 (32:4570)
  • [2] A. Brøndsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974), 335-341. MR 0380343 (52:1243)
  • [3] -, Common fixed points and partial orders, Proc. Amer. Math. Soc. 77 (1979), 365-368. MR 545597 (80i:54052)
  • [4] F. E. Browder and W. V. Petryshin, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228. MR 0217658 (36:747)
  • [5] R. E. Bruck, Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl. 88 (1982), 319-332. MR 667060 (84a:47075)
  • [6] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459-470. MR 0470761 (57:10507)
  • [7] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251. MR 0394329 (52:15132)
  • [8] J. Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369-375. MR 0317130 (47:5678)
  • [9] -, Equivalence of some geometric and related results of nonlinear functional analysis, Comment. Math. Univ. Carolinae 26 (1985), 443-454. MR 817819 (88a:47053)
  • [10] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. MR 0346619 (49:11344)
  • [11] J. P. Penot, The drop theorem, the petal theorem and Ekeland's variational principle, Nonlinear Anal. 10 (1986), 813-822. MR 856865 (87j:49031)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H99, 46A99, 47H10, 54H25

Retrieve articles in all journals with MSC: 47H99, 46A99, 47H10, 54H25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0991704-4
Keywords: Ekeland's variational principle, Caristi's fixed point theorem, drop, random iteration
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society