On nilpotent groups of automorphisms of Klein surfaces

Authors:
Emilio Bujalance and Grzegorz Gromadzki

Journal:
Proc. Amer. Math. Soc. **108** (1990), 749-759

MSC:
Primary 20H10; Secondary 14H99, 30F35

MathSciNet review:
993743

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The nilpotent group of automorphisms of a bordered Klein surface of algebraic genus is known to have at most elements. Moreover this bound is attained if and only if is a power of 2. In this paper we prove that if is nonorientable and then the bound in question can be sharpened to which gives a negative answer to a conjecture of May [16]. We also solve another problem of May [16] finding bounds for the -groups of automorphisms of Klein surfaces.

**[1]**E. Bujalance,*Proper periods of normal*NEC*subgroups with even index*, Rev. Math. Hisp.-Amer.**41**(4), 121-127.**[2]**Emilio Bujalance,*Normal subgroups of N.E.C. groups*, Math. Z.**178**(1981), no. 3, 331–341. MR**635202**, 10.1007/BF01214870**[3]**E. Bujalance and E. Martinez,*A remark on NEC groups representing surfaces with boundary*, Bull. London Math. Soc.**21**(1989), no. 3, 263–266. MR**986369**, 10.1112/blms/21.3.263**[4]**Emilio Bujalance, José J. Etayo, José M. Gamboa, and Grzegorz Gromadzki,*Automorphism groups of compact bordered Klein surfaces*, Lecture Notes in Mathematics, vol. 1439, Springer-Verlag, Berlin, 1990. A combinatorial approach. MR**1075411****[5]**J. A. Bujalance,*Normal subgroup of even index in an NEC group*, Arch. Math. (Basel)**49**(1987), no. 6, 470–478. MR**921112**, 10.1007/BF01194293**[6]**J. J. Etayo Gordejuela,*Klein surfaces with maximal symmetry and their groups of automorphisms*, Math. Ann.**268**(1984), no. 4, 533–538. MR**753412**, 10.1007/BF01451857**[7]**J. J. Etayo Gordejuela and C. Pérez-Chirinos,*Bordered and unbordered Klein surfaces with maximal symmetry*, J. Pure Appl. Algebra**42**(1986), no. 1, 29–35. MR**852315**, 10.1016/0022-4049(86)90057-5**[8]**Newcomb Greenleaf and Coy L. May,*Bordered Klein surfaces with maximal symmetry*, Trans. Amer. Math. Soc.**274**(1982), no. 1, 265–283. MR**670931**, 10.1090/S0002-9947-1982-0670931-X**[9]**A. H. M. Hoare and D. Singerman,*The orientability of subgroups of plane groups*, Groups—St. Andrews 1981 (St. Andrews, 1981) London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 1982, pp. 221–227. MR**679163**, 10.1017/CBO9780511661884.014**[10]**A. M. Macbeath,*The classification of non-euclidean plane crystallographic groups*, Canad. J. Math.**19**(1967), 1192–1205. MR**0220838****[11]**Coy L. May,*Automorphisms of compact Klein surfaces with boundary*, Pacific J. Math.**59**(1975), no. 1, 199–210. MR**0399451****[12]**Coy L. May,*Large automorphism groups of compact Klein surfaces with boundary. I*, Glasgow Math. J.**18**(1977), no. 1, 1–10. MR**0425113****[13]**Coy L. May,*A bound for the number of automorphisms of a compact Klein surface with boundary*, Proc. Amer. Math. Soc.**63**(1977), no. 2, 273–280. MR**0435385**, 10.1090/S0002-9939-1977-0435385-0**[14]**Coy L. May,*Maximal symmetry and fully wound coverings*, Proc. Amer. Math. Soc.**79**(1980), no. 1, 23–31. MR**560577**, 10.1090/S0002-9939-1980-0560577-X**[15]**-,*A family of**-groups*, Canad. J. Math.**37**(1986), 1094-1109.**[16]**Coy L. May,*Nilpotent automorphism groups of bordered Klein surfaces*, Proc. Amer. Math. Soc.**101**(1987), no. 2, 287–292. MR**902543**, 10.1090/S0002-9939-1987-0902543-4**[17]**Coy L. May,*Supersolvable 𝑀*-groups*, Glasgow Math. J.**30**(1988), no. 1, 31–40. MR**925557**, 10.1017/S001708950000700X**[18]**R. Preston,*Projective structures and fundamental domains on compact Klein surfaces*, Ph.D. thesis, University of Texas, 1975.**[19]**David Singerman,*𝑃𝑆𝐿(2,𝑞) as an image of the extended modular group with applications to group actions on surfaces*, Proc. Edinburgh Math. Soc. (2)**30**(1987), no. 1, 143–151. Groups—St. Andrews 1985. MR**879440**, 10.1017/S001309150001806X**[20]**D. Singerman,*Automorphisms of compact non-orientable Riemann surfaces*, Glasgow Math. J.**12**(1971), 50–59. MR**0296286****[21]**H. C. Wilkie,*On non-Euclidean crystallographic groups*, Math. Z.**91**(1966), 87–102. MR**0185013****[22]**Reza Zomorrodian,*Nilpotent automorphism groups of Riemann surfaces*, Trans. Amer. Math. Soc.**288**(1985), no. 1, 241–255. MR**773059**, 10.1090/S0002-9947-1985-0773059-6**[23]**Reza Zomorrodian,*Classification of 𝑝-groups of automorphisms of Riemann surfaces and their lower central series*, Glasgow Math. J.**29**(1987), no. 2, 237–244. MR**901670**, 10.1017/S0017089500006881

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20H10,
14H99,
30F35

Retrieve articles in all journals with MSC: 20H10, 14H99, 30F35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-0993743-6

Keywords:
Klein surfaces,
algebraic genus,
automorphism,
nilpotent group

Article copyright:
© Copyright 1990
American Mathematical Society