Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On nilpotent groups of automorphisms of Klein surfaces


Authors: Emilio Bujalance and Grzegorz Gromadzki
Journal: Proc. Amer. Math. Soc. 108 (1990), 749-759
MSC: Primary 20H10; Secondary 14H99, 30F35
DOI: https://doi.org/10.1090/S0002-9939-1990-0993743-6
MathSciNet review: 993743
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The nilpotent group of automorphisms of a bordered Klein surface $ X$ of algebraic genus $ {\mathbf{q}} \geq 2$ is known to have at most $ 8({\mathbf{q}} - 1)$ elements. Moreover this bound is attained if and only if $ {\mathbf{q}} - 1$ is a power of 2. In this paper we prove that if $ X$ is nonorientable and $ {\mathbf{q}} \geq 3$ then the bound in question can be sharpened to $ 4{\mathbf{q}}$ which gives a negative answer to a conjecture of May [16]. We also solve another problem of May [16] finding bounds for the $ p$-groups of automorphisms of Klein surfaces.


References [Enhancements On Off] (What's this?)

  • [1] E. Bujalance, Proper periods of normal NEC subgroups with even index, Rev. Math. Hisp.-Amer. 41 (4), 121-127.
  • [2] -, Normal subgroups of NEC groups, Math. Z. 178 (1981), 331-341. MR 635202 (83e:20047)
  • [3] E. Bujalance and E. Martinez, A remark on NEC groups of surfaces with boundary, Bull. London Math. Soc. 21. (1989), 263-266. MR 986369 (90a:20094)
  • [4] E. Bujalance, J. J. Etayo Gordejuela, J. M. Gamboa and G Gromadzki, A combinatorial approach to automorphism groups of compact bordered Klein surfaces (in preparation). MR 1075411 (92a:14018)
  • [5] J. A. Bujalance, Normal subgroups of even index in an NEC group, Arch. Math. 49 (1987), 470-478. MR 921112 (89j:20056)
  • [6] J. J. Etayo Gordejuela, Klein surfaces with maximal symmetry and their groups of automorphisms, Math. Ann. 268 (1984), 533-538. MR 753412 (86g:30058)
  • [7] J. J. Etayo Gordejuela and C. Perez-Chirinos, Bordered and unbordered Klein surfaces with maximal symmetry, J. Pure Appl. Algebra 42 (1986), 25-35. MR 852315 (88c:14048)
  • [8] N. Greenleaf and C. L. May, Bordered Klein surfaces with maximal symmetry, Trans. Amer. Math. Soc. 274 (1982), 265-283. MR 670931 (84f:14022)
  • [9] A. H. M. Hoare and D. Singerman, The orientability of subgroups of plane groups, London Math. Soc. Lecture Note Ser. 71 (1982), 221-227. MR 679163 (85g:20061)
  • [10] A. M. Macbeath, The classification of non-euclidean plane crystallographic groups, Canad. J. Math. 19 (1967), 1192-1205. MR 0220838 (36:3890)
  • [11] C. L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975), 199-210. MR 0399451 (53:3295)
  • [12] -, Large automorphism groups of compact Klein surfaces with boundary, I, Glasgow Math. J. 111 (1977), 1-10. MR 0425113 (54:13071)
  • [13] -, A bound for the number of automorphisms of a compact Klein surface with boundary, Proc. Amer. Math. Soc. 63 (1977), 273-280. MR 0435385 (55:8345)
  • [14] -, Maximal symmetry and fully wound coverings, Proc. Amer. Math. Soc. 79 (1980), 23-31. MR 560577 (81g:14014)
  • [15] -, A family of $ {M^*}$-groups, Canad. J. Math. 37 (1986), 1094-1109.
  • [16] -, Nilpotent automorphism groups of bordered Klein surfaces, Proc. Amer. Math. Soc. 101 (2) (1987), 287-292. MR 902543 (88j:30093)
  • [17] -, Supersolvable $ {M^*}$-groups, Glasgow Math. J. 30 (1988), 31-40. MR 925557 (89a:20039)
  • [18] R. Preston, Projective structures and fundamental domains on compact Klein surfaces, Ph.D. thesis, University of Texas, 1975.
  • [19] D. Singerman, $ PSL(2,q)$ as an image of the extended modular group with applications to group actions on surfaces, Proc. Edinburgh Math. Soc. 30 (1987), 143-151. MR 879440 (88d:20069)
  • [20] -, Automorphisms of compact nonorientable Riemann surfaces, Glasgow Math. J. 12 (1971), 50-59. MR 0296286 (45:5347)
  • [21] M. C. Wilkie, On non-euclidean crystallographic groups, Math. Z. 91 (1966), 87-102. MR 0185013 (32:2483)
  • [22] R. Zomorrodian, Nilpotent automorphism groups of Riemann surfaces, Trans. Amer. Math. Soc. 288 (1985), 241-255. MR 773059 (86d:20059)
  • [23] -, Classification of $ p$-groups of automorphisms of Riemann surfaces and their lower central series, Glasgow Math. J. 29 (1987), 237-244. MR 901670 (88j:20050)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20H10, 14H99, 30F35

Retrieve articles in all journals with MSC: 20H10, 14H99, 30F35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0993743-6
Keywords: Klein surfaces, algebraic genus, automorphism, nilpotent group
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society