Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On totally geodesic spheres in Grassmannians and $ {\rm O}(n)$


Author: Qi Ming Wang
Journal: Proc. Amer. Math. Soc. 108 (1990), 811-815
MSC: Primary 53C42; Secondary 55P42, 57T20
DOI: https://doi.org/10.1090/S0002-9939-1990-0994793-6
MathSciNet review: 994793
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It was shown in [5] that the generators of the homotopy groups of the stable orthogonal groups and the stable Grassmannians can be represented by embedded totally geodesic spheres of constant curvature. In this paper we prove that all elements of the above-mentioned homotopy groups can be represented by such spheres.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), suppl., 3-38. MR 0167985 (29:5250)
  • [2] D. Ferus, H. Karcher and H. Münzner, Cliffordalgebren und neue isoparametrische Hyperflächen, Math. Z. 177 (1981), 479-502. MR 624227 (83k:53075)
  • [3] D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 0229247 (37:4821)
  • [4] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. MR 0200865 (34:751)
  • [5] A. Rigas, Geodesic spheres as generators of the homotopy groups of O and BO, J. Differential Geom. 13 (1978), 527-545. MR 570216 (81e:57043)
  • [6] Q.-M. Wang, On the topology of Clifford isoparametric hypersurfaces, J. Differential Geom. 27 (1988), 55-66. MR 918456 (89e:53093)
  • [7] J. Wolf, Geodesic spheres in Grassmann manifolds, Illinois J. Math. 7 (1963), 425-446. MR 0156294 (27:6220)
  • [8] Y. C. Wong, Isoclinic $ n$-planes, Mem. Amer. Math. Soc. 41 (1961). MR 0145437 (26:2968)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C42, 55P42, 57T20

Retrieve articles in all journals with MSC: 53C42, 55P42, 57T20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0994793-6
Keywords: Clifford modules, isoclinic spheres, KO groups, totally geodesic maps
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society