Bounds for the order of supersoluble automorphism groups of Riemann surfaces
Author:
Reza Zomorrodian
Journal:
Proc. Amer. Math. Soc. 108 (1990), 587600
MSC:
Primary 20H10; Secondary 30F20
MathSciNet review:
994795
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The maximal automorphism groups of compact Riemann surfaces for a class of groups positioned between nilpotent and soluble groups is investigated. It is proved that if is any finite supersoluble group acting as the automorphism group of some compact Riemann surface of genus , then: (i) If then and equality occurs when is the supersoluble group that is the semidirect product of the dihedral group of order 8 and the cyclic group of order 3. This exceptional case occurs when the Fuchsian group has the signature (0;2,4,6), and can cover only this finite supersoluble group of order 24. (ii) If then , and if then must be a power of 3. Conversely if , then there is at least one surface of genus with an automorphism group of order which must be supersoluble since its order is of the form . This bound corresponds to a specific Fuchsian group given by the signature (0;2,3,18). The terms in the chief series of each of these Fuchsian groups to the point where a torsionfree subgroup is reached are computed.
 [1]
W.
Burnside, Theory of groups of finite order, Dover
Publications, Inc., New York, 1955. 2d ed. MR 0069818
(16,1086c)
 [2]
H.
S. M. Coxeter and W.
O. J. Moser, Generators and relations for discrete groups, 3rd
ed., SpringerVerlag, New YorkHeidelberg, 1972. Ergebnisse der Mathematik
und ihrer Grenzgebiete, Band 14. MR 0349820
(50 #2313)
 [3]
K.
W. Gruenberg, Residual properties of infinite soluble groups,
Proc. London Math. Soc. (3) 7 (1957), 29–62. MR 0087652
(19,386a)
 [4]
Ravi
S. Kulkarni, Symmetries of surfaces, Topology
26 (1987), no. 2, 195–203. MR 895571
(88m:57051), http://dx.doi.org/10.1016/00409383(87)900590
 [5]
Ravi
S. Kulkarni, Normal subgroups of Fuchsian groups, Quart. J.
Math. Oxford Ser. (2) 36 (1985), no. 143,
325–344. MR
800765 (87c:20089), http://dx.doi.org/10.1093/qmath/36.3.325
 [6]
A.
M. Macbeath, On a theorem of Hurwitz, Proc. Glasgow Math.
Assoc. 5 (1961), 90–96 (1961). MR 0146724
(26 #4244)
 [7]
A.
M. Macbeath, Residual nilpotency of Fuchsian groups, Illinois
J. Math. 28 (1984), no. 2, 299–311. MR 740620
(85e:30080)
 [8]
Chihhan
Sah, Groups related to compact Riemann surfaces, Acta Math.
123 (1969), 13–42. MR 0251216
(40 #4447)
 [9]
Carl
Ludwig Siegel, Some remarks on discontinuous groups, Ann. of
Math. (2) 46 (1945), 708–718. MR 0014088
(7,239c)
 [10]
David
Singerman, Subgroups of Fuschian groups and finite permutation
groups, Bull. London Math. Soc. 2 (1970),
319–323. MR 0281805
(43 #7519)
 [11]
Henry
G. Bray, W.
E. Deskins, David
Johnson, John
F. Humphreys, B.
M. Puttaswamaiah, Paul
Venzke, and Gary
L. Walls, Between nilpotent and solvable, Polygonal Publ.
House, Washington, N. J., 1982. Edited and with a preface by Michael
Weinstein. MR
655785 (84k:20002)
 [12]
Reza
Zomorrodian, Nilpotent automorphism groups of
Riemann surfaces, Trans. Amer. Math. Soc.
288 (1985), no. 1,
241–255. MR
773059 (86d:20059), http://dx.doi.org/10.1090/S00029947198507730596
 [13]
Reza
Zomorrodian, Classification of 𝑝groups of automorphisms of
Riemann surfaces and their lower central series, Glasgow Math. J.
29 (1987), no. 2, 237–244. MR 901670
(88j:20050), http://dx.doi.org/10.1017/S0017089500006881
 [1]
 W. Burnside, Theorem of groups of finite order, Note , Dover, New York, 1955. MR 0069818 (16:1086c)
 [2]
 H. S. M. Coxeter, W. O. J. generators and relations for discrete groups, Ergebnisse der Math., Bd. 14, 3rd. ed., Springer, BerlinHeidelbergNew York, 1972. MR 0349820 (50:2313)
 [3]
 K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 2962. MR 0087652 (19:386a)
 [4]
 R. S. Kulkarni, Symmetries of surfaces, Topology 26 (1987), 195203. MR 895571 (88m:57051)
 [5]
 , Normal subgroups of Fuchsian groups, Quart. J. of Math. 36 (1985), 325344. MR 800765 (87c:20089)
 [6]
 A. M. Macbeath, On a theorem of Hurwitz, Glasgow Math. J. 5 (1961), 9096. MR 0146724 (26:4244)
 [7]
 , Residual nilpotency of Fuchsian groups, Illinois J. Math. (2) 28 (1984), 299311. MR 740620 (85e:30080)
 [8]
 C. H. Sah, Groups related to compact Riemann surfaces, Acta Math. 123 (1969), 1342. MR 0251216 (40:4447)
 [9]
 C. L. Siegel, Some remarks on discontinuous groups, Annals of Math. 46 (1945), 708718. MR 0014088 (7:239c)
 [10]
 D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319323. MR 0281805 (43:7519)
 [11]
 M. Weinstein, ed., Between nilpotent and soluble, House, Passaic, New Jersey, 1982, 242. MR 655785 (84k:20002)
 [12]
 R. Zomorrodian, Nilpotent automorphism groups of Riemann surfaces, Trans. Amer. Math. Soc. 288 (1985), 241255. MR 773059 (86d:20059)
 [13]
 , Classification of groups of automorphisms of Riemann surfaces and their lower central series, Glasgow Math. J. 29 (1987), 237244. MR 901670 (88j:20050)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
20H10,
30F20
Retrieve articles in all journals
with MSC:
20H10,
30F20
Additional Information
DOI:
http://dx.doi.org/10.1090/S0002993919900994795X
PII:
S 00029939(1990)0994795X
Keywords:
Fuchsian groups,
supersoluble automorphism groups,
nilpotent automorphism groups,
maximal automorphism groups,
compact Riemann surfaces,
action of groups,
generators,
relations,
signatures,
bounds,
chief series
Article copyright:
© Copyright 1990
American Mathematical Society
