Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On the surjectivity criterion for Buchsbaum modules

Author: Shiro Goto
Journal: Proc. Amer. Math. Soc. 108 (1990), 641-646
MSC: Primary 13H10; Secondary 13D03
MathSciNet review: 998734
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a Cohen-Macaulay local ring with maximal ideal $ m$ and suppose that $ \dim R \geq 2$. Then $ R$ is regular if (and only if) for any Buchsbaum $ R$-module $ M$ and for any integer $ i,i \ne {\dim _R}M$, the canonical map $ {\text{Ext}}_R^i\left( {R/m,M} \right) \to H_m^i\left( M \right): = \lim_{\substack{\to\\ n}} \mathrm{Ext}_R^i \left(R/m^n, M \right)$ is surjective. The hypothesis that $ R$ is Cohen-Macaulay is not superfluous. Two examples are given.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H10, 13D03

Retrieve articles in all journals with MSC: 13H10, 13D03

Additional Information

PII: S 0002-9939(1990)0998734-7
Article copyright: © Copyright 1990 American Mathematical Society