Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic depth and connectedness in projective schemes


Author: M. Brodmann
Journal: Proc. Amer. Math. Soc. 108 (1990), 573-581
MSC: Primary 13C15; Secondary 13H99, 14A15
DOI: https://doi.org/10.1090/S0002-9939-1990-1031674-6
MathSciNet review: 1031674
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ I \subseteq \mathfrak{m}$ be an ideal of a local noetherian ring $ \left( {R,\mathfrak{m}} \right)$. Consider the exceptional fiber $ {\pi ^{ - 1}}\left( {V\left( 1 \right)} \right)$ of the blowing-up morphism

$\displaystyle \pi :\operatorname{Proj}\left( {{ \oplus _{n \geq 0}}{I^n}} \right) \to \operatorname{Spec}\left( R \right)$

and the special fiber $ {\pi ^{ - 1}}\left( \mathfrak{m} \right)$. We show that the complement set

$\displaystyle {\pi ^{ - 1}}\left( {V\left( I \right)} \right) - {\pi ^{ - 1}}\left( \mathfrak{m} \right)$

is highly connected if the asymptotic depth of the higher conormal modules $ {I^n}/{I^{n + 1}}$ is large.

References [Enhancements On Off] (What's this?)

  • [1] M. Brodmann, Asymptotic stability of $ \operatorname{Ass} \left( {M/{I^n}M} \right)$, Proc. Amer. Math. Soc. 74 (1979), 16-18. MR 521865 (80c:13012)
  • [2] -, On the asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), 35-39. MR 530808 (81e:13003)
  • [3] -, Some remarks on blow-up and conormal cones, Proc. Conf. Commutative Algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983. MR 686938 (85a:14003)
  • [4] -, Rees rings and form rings of almost complete intersections, Nagoya Math. J. 88 (1982), 1-16. MR 683240 (84f:13017)
  • [5] -, A few remarks on blowing-up and connectedness, J. Reine Angew. Math 370 (1986), 52-60. MR 852509 (87j:14014)
  • [6] M. Brodmann and J. Rung, Local cohomology and the connectedness dimension in algebraic varieties, Comment. Math. Helv. 61 (1986), 481-490. MR 860135 (87j:14006)
  • [7] L. Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972), 369-373. MR 0304377 (46:3512)
  • [8] A. Grothendieck, EGA. III, Inst. Hautes Études Sci. Publ. Math. 11 (1961).
  • [9] -, EGA. IV, Inst. Hautes Études Sci. 24 (1969).
  • [10] J. P. Serre, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278. MR 0068874 (16:953c)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13C15, 13H99, 14A15

Retrieve articles in all journals with MSC: 13C15, 13H99, 14A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1031674-6
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society