Unimodal polynomials arising from symmetric functions

Author:
Francesco Brenti

Journal:
Proc. Amer. Math. Soc. **108** (1990), 1133-1141

MSC:
Primary 05A15; Secondary 05A05, 05A30

DOI:
https://doi.org/10.1090/S0002-9939-1990-0993741-2

MathSciNet review:
993741

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a general result that, using the theory of symmetric functions, produces several new classes of symmetric unimodal polynomials. The result has applications to enumerative combinatorics including the proof of a conjecture by R. Stanley.

**[1]**G. E. Andrews,*A theorem on reciprocal polynomials with applications to permutations and compositions*, Amer. Math. Monthly**82**(1975), 830-833. MR**0396507 (53:370)****[2]**F. Brenti,*Unimodal, log-concave and Pólya frequency sequences in combinatorics*, Ph. D. thesis, June 1988, Massachusetts Institute of Technology. MR**963833 (90d:05014)****[3]**-,*Unimodal, log-concave and Pólya frequency sequences in combinatorics*, Memoirs Amer. Math. Soc.**81**, no. 413, 1989. MR**963833 (90d:05014)****[4]**L. Butler,*A unimodality result in the enumeration of subgroups of a finite abelian group*, Proc. Amer. Math. Soc.**101**(1987), 771-775. MR**911049 (88k:05012)****[5]**L. Comtet,*Advanced combinatorics*, Reidel, Dordrecht/Boston, 1974. MR**0460128 (57:124)****[6]**A. M. Garsia and J. Remmel,*A combinatorial interpretation of**-derangement and**-Laguerre numbers*, European J. Combin.**1**(1980), 47-59. MR**576766 (81g:05011)****[7]**I. Gessel and G. Viennot,*Determinants, paths, and plane partitions*, preprint.**[8]**I. P. Goulden and D. M. Jackson,*Combinatorial enumeration*, John Wiley, New York, 1983. MR**702512 (84m:05002)****[9]**I. G. MacDonald,*Symmetric functions and Hall polynomials*, Oxford University Press, New York/London, 1979. MR**553598 (84g:05003)****[10]**R. Proctor,*Representations of**on posets and the Sperner property*, SIAM J. Algebraic Discrete Methods**3**(1982), 275-280. MR**655567 (83k:06005)****[11]**-,*Solution of two difficult combinatorial problems with linear algebra*, Amer. Math. Monthly**89**(1982), 721-734. MR**683197 (84f:05002)****[12]**-,*Bruhat lattices, plane partitions generating functions, and minuscule representations*, European J. Combin.**5**(1984), 331-350. MR**782055 (86h:17007)****[13]**B. Sagan,*Inductive and injective proofs of log concavity results*, Discrete Math.**68**(1988), 281-292. MR**926131 (89b:05009)****[14]**R. Simion,*A multiindexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences*, J. Combin. Theory Ser. A**36**(1984), 15-22. MR**728500 (85e:05015)****[15]**R. Stanley,*Theory and application of plane partitions:*Part 1, Studies Applied Math.**50**(1971), 167-188. MR**0325407 (48:3754)****[16]**-,*Unimodal sequences arising from Lie algebras*, in Young Day Proceedings (T. V. Narayana, R. M. Mathsen, and J. G. Williams, eds.), Dekker, New York/Basel, 1980, 127-136. MR**588199 (81k:05011)****[17]**-,*Unimodality and Lie superalgebras*, Studies in Applied Math.**72**(1985), 263-281. MR**790132 (87a:17024)****[18]**-,*Enumerative combinatorics*, vol. 1, Wadsworth and Brooks/Cole, Monterey, California 1986.**[19]**-,*Generalized**-vectors, intersection cohomology of toric varieties and related results*, Advanced Studies in Pure Math.**11**(1987), 187-213.**[20]**-,*Log-concave and unimodal sequences in algebra, combinatorics and geometry*, (to appear in Annals of the New York Academy of Sciences). MR**1110850 (92e:05124)****[21]**M. Wachs,*On**-derangement numbers*, Proc. Amer. Math. Soc.**106**(1989), 273-278. MR**937015 (89i:05032)****[22]**D. Wagner,*The partition polynomial of a finite set system*, (to appear in J. Combin. Theory Ser. A). MR**1082848 (92b:05005)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
05A15,
05A05,
05A30

Retrieve articles in all journals with MSC: 05A15, 05A05, 05A30

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-0993741-2

Article copyright:
© Copyright 1990
American Mathematical Society