A uniqueness condition for finite measures

Author:
J. E. Nymann

Journal:
Proc. Amer. Math. Soc. **108** (1990), 913-919

MSC:
Primary 28A10; Secondary 60A10

DOI:
https://doi.org/10.1090/S0002-9939-1990-1000164-9

MathSciNet review:
1000164

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be two finite measures on the same measurable space which have the property: implies that . If the range of is an interval, then there is a constant such that . This extends earlier results of Leth and Malitz on purely atomic measures.

**[1]**E. Bolker,*Functions resembling quotients of measures*, Trans. Amer. Math Soc.**124**(1966), 292-312. MR**0197671 (33:5834)****[2]**R. Chuaqui and J. Malitz,*Preorderings compatible with probability measures*, Trans. Amer. Math. Soc.**279**(1983), 811-824. MR**709585 (85d:60010)****[3]**J. A. Guthrie and J. E. Nymann,*The topological structure of the set of subsums of an infinite series*, Colloq. Math.**55**(1988), 129-133. MR**978930 (90b:40010)****[4]**S. Leth,*A uniqueness condition for sequences*, Proc. Amer. Math. Soc.**93**(1985), 287-290. MR**770538 (86b:26027)****[5]**M. Loeve,*Probability theory*, 3rd ed., Van Nostrand, Princeton, NJ, 1963. MR**0203748 (34:3596)****[6]**J. Malitz,*A strengthening of Leth's uniqueness condition for sequences*, Proc. Amer. Math. Soc.**98**(1986), 641-642. MR**861767 (87m:40009)****[7]**C. Villegas,*On qualitative probability**-algebras*, Ann. Math. Statist.**35**(1964), 1787-1796. MR**0167588 (29:4860)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A10,
60A10

Retrieve articles in all journals with MSC: 28A10, 60A10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1000164-9

Article copyright:
© Copyright 1990
American Mathematical Society