Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A remark on $ \lambda\sb {2g-2}$


Author: Burton Randol
Journal: Proc. Amer. Math. Soc. 108 (1990), 1081-1083
MSC: Primary 58G25; Secondary 30F10
DOI: https://doi.org/10.1090/S0002-9939-1990-1000167-4
MathSciNet review: 1000167
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that if the first $ 2g - 3$ Laplace eigenvalues on a compact Riemann surface of genus $ \geq 2$ are small, then $ {\lambda _{2g - 2}}$ is greater than $ \frac{1}{4}$.


References [Enhancements On Off] (What's this?)

  • [1] Lipman Bers, An inequality for Riemann surfaces, Differential Geometry and Complex Analysis, Springer-Verlag, 1985. MR 780038 (86h:30076)
  • [2] Marc Burger, Asymptotics of small eigenvalues of Riemann surfaces, Bull. Amer. Math. Soc. 18 (1988), 39-40. MR 919656 (88m:58184)
  • [3] Peter Buser, Riemannsche Flächen mit Eigenwerten in $ (0,\frac{1}{4}]$, Comment. Math. Helv. 52 (1977), 25-34. MR 0434961 (55:7924)
  • [4] -, On Cheeger's inequality $ {\lambda _1} \geq {h^2}/4$, Geometry of the Laplace Operator, 36, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc., Providence, RI, pp. 29-77.
  • [5] -, Riemannsche Flächen und Längenspektrum vom trigonometrischen Standpunkt aus (Habilitationsschrift der Universität Bonn), Universität Bonn.
  • [6] Bruno Colbois, Petites valuers propres du laplacien sur une surface de Riemann compacte et graphes., C. R. Acad. Sc. Paris 301 (1985), 927-930. MR 829064 (88b:58139)
  • [7] J. Dodziuk, T. Pignataro, B. Randol and D. Sullivan, Estimating small eigenvalues of Riemann surfaces, Contemp. Math. 64, Amer. Math. Soc., Providence, RI, 1987, pp. 93-121. MR 881458 (88h:58119)
  • [8] J. Dodziuk and B. Randol, Lower bounds for $ {\lambda _1}$ on a finite-volume hyperbolic manifold, J. Differential Geom. 24 (1986), 133-139. MR 857379 (87m:58171)
  • [9] T. Pignataro and D. Sullivan, Ground state and lowest eigenvalue of the Laplacian for non-compact hyperbolic surfaces, Comm. Math. Physics 104 (1986), 529-535. MR 841667 (87m:58178)
  • [10] Burton Randol, Small eigenvalues of the Laplace operator on compact Riemann surfaces, Bull. Amer. Math. Soc. 80 (1974), 998-1001. MR 0400316 (53:4151)
  • [11] R. Schoen, S. Wolpert and S.T. Yau, Geometric bounds on the low eigenvalues of a compact surface., Geometry of the Laplace Operator, 36, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc., Providence, RI, (1980), pp. 279-285. MR 573440 (81i:58052)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G25, 30F10

Retrieve articles in all journals with MSC: 58G25, 30F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1000167-4
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society