The hereditary Dunford-Pettis property for
Author:
Pilar Cembranos
Journal:
Proc. Amer. Math. Soc. 108 (1990), 947-950
MSC:
Primary 46B15; Secondary 46E40
DOI:
https://doi.org/10.1090/S0002-9939-1990-1004415-6
MathSciNet review:
1004415
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: A Banach space is said to be hereditarily Dunford-Pettis if all of its closed subspaces have the Dunford-Pettis property. In this note we prove that the Banach space
, of all absolutely summing sequences in
with the usual norm, is hereditarily Dunford-Pettis if and only if
is also.
- [1]
P. Cembranos, The hereditary Dunford-Pettis property on
, Illinois J. Math. 31 (1987), 365-373. MR 892175 (88g:46028)
- [2] J. Diestel, A survey of results related to the Dunford-Pettis property, Contemp. Math. 2 (1980), 15-60. MR 621850 (82i:46023)
- [3] -, Sequences and series in Banach spaces, Springer-Verlag, New York, 1984. MR 737004 (85i:46020)
- [4]
H. Knaust and E. Odell, On
sequences in Banach spaces, (to appear in Israel J. Math.). MR 1026560 (91d:46013)
- [5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, Springer-Verlag, New York, 1977. MR 0500056 (58:17766)
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B15, 46E40
Retrieve articles in all journals with MSC: 46B15, 46E40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1990-1004415-6
Article copyright:
© Copyright 1990
American Mathematical Society