Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On rational reciprocity

Author: Charles Helou
Journal: Proc. Amer. Math. Soc. 108 (1990), 861-866
MSC: Primary 11A15; Secondary 11R04
MathSciNet review: 1007498
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A method for deriving "rational" $ n$th power reciprocity laws from general ones is described. It is applied in the cases $ n = 3,4,8$, yielding results of von Lienen, Burde, Williams.

References [Enhancements On Off] (What's this?)

  • [1] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175-184. MR 0241354 (39:2694)
  • [2] G. Eisenstein, Mathematische Werke I and II, Chelsea, 1975.
  • [3] K. Ireland and M. Rosen, A classical introduction to modern number theory, Springer, Berlin, 1982. MR 661047 (83g:12001)
  • [4] H. von Lienen, Reelle kubische und biquadratische Legendre-Symbole, J. Reine Angew. Math. 305 (1979), 140-154. MR 518858 (80d:10004)
  • [5] K. S. Williams, A rational octic reciprocity law, Pacific J. Math. 63 (1976), 563-570. MR 0414467 (54:2568)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11A15, 11R04

Retrieve articles in all journals with MSC: 11A15, 11R04

Additional Information

Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society