Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ \mathcal{C}_1$ is uniformly Kadec-Klee


Author: Chris Lennard
Journal: Proc. Amer. Math. Soc. 109 (1990), 71-77
MSC: Primary 46B20; Secondary 47D25
DOI: https://doi.org/10.1090/S0002-9939-1990-0943795-4
MathSciNet review: 943795
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A dual Banach space $ X$ is Kadec-Klee in the weak * topology if weak * and norm convergence of sequences coincide in the unit sphere of $ X$. We shall consider a stronger, uniform version of this property. A dual Banach space $ X$ is uniformly Kadec-Klee in the weak * topology (UKK*) if for each $ \varepsilon > 0$ we can find a $ \delta $ in $ (0,1)$ such that every weak $ *$-compact, convex subset $ C$ of the unit ball of $ X$ whose measure of norm compactness exceeds $ \varepsilon $ must meet the $ (1 - \delta )$-ball of $ X$. We show in this paper that $ {C_1}(\mathcal{H})$, the space of trace class operators on an arbitrary infinite-dimensional Hilbert space $ \mathcal{H}$ is UKK*. Consequently $ {C_1}(\mathcal{H})$ has weak $ *$-normal structure. This answers affirmatively a question of A. T. Lau and P. F. Mah. From this it follows that $ {C_1}(\mathcal{H})$ has the weak $ *$-fixed point property.


References [Enhancements On Off] (What's this?)

  • [1] J. Arazy, More on convergence in unitary matrix spaces, Proc. Amer. Math. Soc. 83 (1981), 44-48. MR 619978 (82f:46009)
  • [2] D. van Dulst and Brailey Sims, Fixed points of nonexpansive mappings and Chebyshev centers in Banach spaces with norms of type (KK), Banach Space Theory and its Applications (Proc. Bucharest 1981), Lecture Notes in Math., vol. 991, Springer-Verlag, Berlin, Heidelberg and New York. MR 714171 (84i:46027)
  • [3] D. van Dulst and V. de Valk (KK), properties, normal structure and fixed points of nonexpansive mappings in Orlicz sequence spaces, Canad. J. Math. 38 (1986), 728-750. MR 845675 (87i:46049)
  • [4] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Mono., vol. 18 Amer. Math. Soc., Providence, RI, (1969). MR 0246142 (39:7447)
  • [5] R. Huff, Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749. MR 595102 (82b:46016)
  • [6] M. I. Kadec, On the connection between weak and strong convergences, Dopovīdī Akad. Nauk Ukrain 9 (1959), 949-952. (Ukrainian) MR 0112021 (22:2879)
  • [7] V. L. Klee, Mappings into normed linear spaces, Fund. Math. 49 (1960/61), 25-34. MR 0126690 (23:A3985)
  • [8] A. T. Lau and P. F. Mah, Quasi-normal structures for certain spaces of operators on a Hilbert space, Pacific J. Math. 121 (1986), 109-118. MR 815037 (87f:47065)
  • [9] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I, A Series of Modern Surveys in Mathematics, vol. 92, Springer-Verlag, Berlin, Heidelberg, New York, 1977. MR 0500056 (58:17766)
  • [10] R. Schatten, Norm ideals of completely continuous operators, Springer-Verlag, Berlin, 1960. MR 0119112 (22:9878)
  • [11] B. Simon, Convergence in trace ideals, Proc. Amer. Math. Soc. 83 (1981), 39-43. MR 619977 (82h:47042)
  • [12] Brailey Sims, Fixed points of nonexpansive maps on weak and weak * compact sets, Lecture Notes, Queen's Univ., Kingston, 1982.
  • [13] -, The existence question for fixed points of nonexpansive maps, Lecture Notes, Kent State Univ., 1986.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 47D25

Retrieve articles in all journals with MSC: 46B20, 47D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-0943795-4
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society