A LINEARIZATION OF THE CIRCULAR MAXIMAL OPERATOR

DANIEL M. OBERLIN

(Communicated by J. Marshall Ash)

Abstract. An interesting linearization of the circular maximal operator is of restricted weak type \((2, 2)\).

The spherical maximal operator \(\mathcal{M}\) on \(\mathbb{R}^n\) is defined by

\[
\mathcal{M}f(x) = \sup_{t > 0} \int_{|y| = 1} |f|(x - ty) \, dy.
\]

Here \(f\) is an appropriate function and \(dy\) denotes normalized Lebesgue measure on the unit sphere in \(\mathbb{R}^n\). In [4] Stein proved that \(\mathcal{M}\) is bounded on \(L^p(\mathbb{R}^n)\) if \(p > n/(n-1)\) and \(n \geq 3\). More recently Bourgain [1] established the same result for \(n = 2\). Bourgain [2] also noted that when \(n \geq 3\) and \(p = n/(n-1)\), \(\mathcal{M}\) is restricted weak type \((p, p)\)—that is, \(\mathcal{M}\) maps \(L^{p,1}(\mathbb{R}^n)\) into \(L^{p,\infty}(\mathbb{R}^n)\). This result implies that of [4]. It is then natural to ask if \(\mathcal{M}\) maps \(L^{2,1}(\mathbb{R}^2)\) into \(L^{2,\infty}(\mathbb{R}^2)\). Leckband [3] provided a partial result: the answer is yes if one restricts to the subspace of radial functions. The purpose of this note is to give a partial result with a different flavor. We restrict the operator instead of its domain and define, as in [1, p. 70], a linearization \(T\) of \(\mathcal{M}\) by

\[
Tf(x) = \int_{|y| = 1} f(x - |x|y) \, dy.
\]

Theorem. The operator \(T\) maps \(L^{2,1}(\mathbb{R}^2)\) into \(L^{2,\infty}(\mathbb{R}^2)\).

In all known cases the mapping properties of \(T\) are as bad as those of \(\mathcal{M}\), and so this theorem lends support to the conjecture that \(\mathcal{M}\) is of restricted weak type \((2, 2)\) on \(\mathbb{R}^2\).

For \(x \in \mathbb{R}^2\), let \(L_x\) be the line through \(x\) perpendicular to the radial segment from the origin to \(x\). Define an operator \(S\) by

\[
Sf(x) = \frac{1}{|x|} \int_{L_x} f(y) \, dy,
\]

Received by the editors April 14, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 42B25.

Partially supported by a grant from the National Science Foundation.
where dy is one-dimensional Lebesgue measure on L_x. Then S is a weighted version of the Radon transform on \mathbb{R}^2 and (see Lemma 2) is equivalent to the adjoint of T. Our theorem follows from the boundedness of S from $L^{2,1}(\mathbb{R}^2)$ to $L^{2,\infty}(\mathbb{R}^2)$, which is proved as Lemma 4. To simplify notation we regard points in \mathbb{R}^2 as complex numbers.

Lemma 1. If $z \neq 0$ is a complex number, define $z' = ze^{-i\pi/2}/|z|$. If g and h are nonnegative and measurable, then

$$
\int_0^{2\pi} \int_0^{2\pi} h(e^{i\theta} + e^{i\theta'})g(e^{i\theta'}) \, dt \, d\theta = \int_{|z|<2} h(z) \left[g \left(\frac{z'}{2} + z' \sqrt{1 - \frac{|z|^2}{4}} \right) + g \left(\frac{z}{2} - z' \sqrt{1 - \frac{|z|^2}{4}} \right) \right] \frac{dz}{|z| \sqrt{1 - \frac{|z|^2}{4}}},
$$

where dz denotes two-dimensional Lebesgue measure.

Proof. If $z = e^{i\theta} + e^{i\theta'}$ with $\theta < \theta < \theta + \pi$, then a sketch shows that

$$
e^{i\theta} = \frac{z}{2} + z' \sqrt{1 - \frac{|z|^2}{4}}.
$$

Also the Jacobian of the map

$$(t, \theta) \mapsto z = e^{i\theta} + e^{i\theta'}$$

is

$$|\sin(t - \theta)| = |z| \sqrt{1 - \frac{|z|^2}{4}}.
$$

Thus the formula

$$
\int_0^{\theta + \pi} \int_\theta^{\theta + \pi} h(e^{i\theta} + e^{i\theta'})g(e^{i\theta'}) \, dt \, d\theta = \int_{|z|<2} h(z) g \left(\frac{z}{2} + z' \sqrt{1 - \frac{|z|^2}{4}} \right) \frac{dz}{|z| \sqrt{1 - \frac{|z|^2}{4}}}
$$

is just a change of variable. A similar formula for the range $\theta + \pi < t < \theta + 2\pi$ completes the proof. \square

Lemma 2. If g and h are nonnegative and measurable, then

$$
\int_{\mathbb{R}^2} T f(x) g(x) \, dx = \frac{1}{2} \int_{\mathbb{R}^2} f(x) S g \left(\frac{x}{2} \right) \, dx.
$$
CIRCULAR MAXIMAL OPERATOR

Proof.

\[\int_{\mathbb{R}^2} T f(x) g(x) \, dx = \int_{0}^{\infty} \int_{0}^{2\pi} f(r e^{i\theta} + re^{it}) g(r e^{i\theta}) r \, dt \, d\theta \, dr \]

\[= \int_{0}^{\infty} \int_{0}^{2\pi} f(r_e^{i\phi}) \left\{ g \left(r \left[\frac{ue^{i\phi}}{2} + e^{i(\phi-\frac{\pi}{4})} \sqrt{1 - \frac{u^2}{4}} \right] \right) + g \left(r \left[\frac{ue^{i\phi}}{2} - e^{i(\phi-\frac{\pi}{4})} \sqrt{1 - \frac{u^2}{4}} \right] \right) \right\} \frac{r \, d\phi \, du \, dr}{\sqrt{1 - \frac{u^2}{4}}} \]

by Lemma 1, with \(z = eu^{i\phi} \). To this last expression apply Fubini’s theorem, let \(s = ur \), and apply Fubini’s theorem again. The result is

\[\int_{0}^{\infty} \int_{0}^{2\pi} f(se^{i\phi}) \left\{ g \left(\frac{s}{2} e^{i\phi} + \frac{s}{u} e^{i(\phi-\frac{\pi}{4})} \sqrt{1 - \frac{u^2}{4}} \right) + g \left(\frac{s}{2} e^{i\phi} - \frac{s}{u} e^{i(\phi-\frac{\pi}{4})} \sqrt{1 - \frac{u^2}{4}} \right) \right\} \frac{sd\phi \, du \, ds}{u^2 \sqrt{1 - \frac{u^2}{4}}} \]

where the equalities are from the changes of variable

\[v = \sqrt{1 - \frac{u^2}{4}} \quad \text{and} \quad t = su. \]

This last integral is

\[\frac{1}{2} \int_{\mathbb{R}^2} f(x) S g \left(\frac{x}{2} \right) \, dx. \]

In what follows, \(| \cdot | \) will denote Lebesgue measure on either \(\mathbb{R} \) or \(\mathbb{R}^2 \), the exact meaning being clear from the context. Also, \(\chi(x, E) \) will stand for the characteristic function of the set \(E \) evaluated at \(x \).

Lemma 3. Suppose \(h \) and \(k \) are measurable functions on \([0, \infty]\) with \(0 \leq h, k \leq 1 \). Then

\[\int_{0}^{\infty} \int_{0}^{\infty} \min(h(s), k(r)) \, ds \, dr \leq 4 \left[\int_{0}^{\infty} sh(s) \, ds \right]^\frac{1}{2} \left[\int_{0}^{\infty} rk(r) \, dr \right]^\frac{1}{2}. \]

Proof. The left hand side of the conclusion is not affected by measure-preserving rearrangements of \(h \) and \(k \) while the right hand side will be least when \(h \) and \(k \)
are decreasing. So replacing h and k by suitable approximations shows that it is enough to establish the lemma under the additional hypotheses that h and k are continuous positive strictly decreasing functions satisfying $h(0) = k(0) = 1$.

Now

$$\int_0^\infty \int_0^\infty \min(h(s), k(r)) \, ds \, dr = \int_0^\infty h(s) \{r \colon k(r) > h(s)\} \, ds$$

$$+ \int_0^\infty k(r) \{s \colon h(s) > k(r)\} \, dr = I_1 + I_2.$$

Since $|\{r \colon k(r) > h(s)\}| = k^{-1}(h(s))$,

$$I_1 = \int_0^\infty h(s)k^{-1}(h(s)) \, ds = \int_0^\infty \int_0^{k^{-1}(h(s))} \chi(y, [0, h(s)]) \, dy \, dx \, ds$$

$$= \int_0^\infty \int_0^{k^{-1}(x)} \chi(x, [0, k^{-1}(h(s))]) \chi(y, [0, h(s)]) \, ds \, dy \, dx$$

$$\leq \int_0^\infty \int_0^{k^{-1}(x)} h^{-1}(y) \, dy \, dx$$

$$= \int_0^1 \int_0^{k^{-1}(y)} h^{-1}(y) \, dx \, dy = \int_0^1 h^{-1}(y)k^{-1}(y) \, dy$$

$$\leq \left(\int_0^1 [h^{-1}(y)]^2 \, dy \right)^{1/2} \left(\int_0^1 [k^{-1}(y)]^2 \, dy \right)^{1/2}$$

$$= 2 \left[\int_0^\infty sh(s) \, ds \right]^{1/2} \left[\int_0^\infty rk(r) \, dr \right]^{1/2},$$

where the last equality can be verified by comparing two methods for computing the volume of a solid of revolution. Now interchanging h and k completes the proof of the lemma. \hfill \square

Lemma 4. There is a positive number C such that if E and F are measurable subsets of \mathbb{R}^2, then

$$\int_{\mathbb{R}^2} \chi(x, E)S\chi(\cdot, F)(x) \, dx \leq C|E|^{1/2}|F|^{1/2}.$$

Proof. The operator S is given by the formula

$$Sg(re^{i\theta}) = \frac{1}{r} \int_{-\infty}^\infty g(re^{i\theta} + te^{i(\theta + \xi)}) \, dt,$$

so we will show that

$$\int_0^\infty \int_{-\infty}^\infty \int_0^{2\pi} \chi(re^{i\theta}, E)\chi(re^{i\theta} + te^{i(\theta + \xi)}, F) \, d\theta \, dt \, dr \leq C|E|^{1/2}|F|^{1/2}.$$

We will actually consider only the integral $\int_0^\infty \int_{-\infty}^\infty \int_0^{2\pi}$—the integral $\int_0^\infty \int_{-\infty}^0 \int_0^{2\pi}$ is treated analogously. The change of variable

$$x = x_r(\theta, t) = re^{i\theta} + te^{i(\theta + \xi)}$$
shows that

\[
\int_0^\infty \int_0^\infty \int_0^{2\pi} \chi(re^{i\theta}, E)\chi(re^{i\theta} + te^{i(\theta+\frac{\pi}{2})}, F) \, d\theta \, dt \, dr
= \int_0^\infty \int_0^\infty \int_{\{x > r\}} \chi(p(r, x), E)\chi(x, F) \frac{dx}{\sqrt{|x|^2 - r^2}} \, dr,
\]

where \(p(r, x) \) is the point \(re^{i\theta} \) such that \(x \) can be written \(x = re^{i\theta} + te^{i(\theta+\frac{\pi}{2})} \) for some \(t > 0 \). We write the last integral as \(I_1 + I_2 \) where

\[
I_1 = \int_0^\infty \int_{\{4r > |x| > r\}} \chi(p(r, x), E)\chi(x, F) \frac{dx}{\sqrt{|x|^2 - r^2}} \, dr,
\]

and we begin by considering \(I_1 \):

\[
\int_0^\infty \int_{\{4r > |x| > r\}} \chi(p(r, x), E)\chi(x, F) \frac{dx}{\sqrt{|x|^2 - r^2}} \, dr
\leq C \int_0^\infty (r^{-\frac{1}{2}} |F \cap \{r < |x| < 4r\}|^{1/2}) \times (r^{-\frac{1}{2}} \chi(p(r, x), E)(|x|^2 - r^2)^{-\frac{1}{2}} \chi(|x|, (r, \infty)))_{L^2, \infty} \, dr,
\]

since \(L^2, \infty \) is the dual of \(L^{2,1} \). Applying Hölder's inequality shows that this last integral is dominated by

\[
C \left(\int_0^\infty |F \cap \{r < |x| < 4r\}| \frac{dr}{r} \right)^{1/2} \times \left(\int_0^\infty \| \chi(p(r, x), E)(|x|^2 - r^2)^{-\frac{1}{2}} \chi(|x|, (r, \infty)) \|_{L^2, \infty}^2 \, rd\alpha \right)^{1/2}.
\]

The first term in parentheses is just \((\log 4) \cdot |F|\). We will now prove that the second parenthesized integral is bounded by \(C|E| \) and hence that \(I_1 \leq C|E|^{1/2} |F|^{1/2} \). A sketch shows that if \(se^{i\phi} = re^{i\theta} + te^{i(\theta + \frac{\pi}{2})} \), then

\[
\exp(i\theta) = \exp(i[\phi - \cos^{-1}(r/s)]).
\]

Thus

\[
|\{\phi \in [0, 2\pi) : p(r, se^{i\phi}) \in E\}| = |\{\phi \in [0, 2\pi) : re^{i\phi} \in E\}|,
\]

and so, for \(\lambda > 0 \),

\[
|\{x : |x| > r, p(r, x) \in E, (|x|^2 - r^2)^{-\frac{1}{2}} > \lambda\}|
= \int_r^{\sqrt{r^2 + \lambda^{-2}}} |\{\phi \in [0, 2\pi) : p(r, se^{i\phi}) \in E\}| \, ds
= |\{\phi \in [0, 2\pi) : re^{i\phi} \in E\}|/2\lambda^2.
\]
It follows that
\[\int_0^\infty \| \chi(p(r, x), E)(|x|^2 - r^2)^{-\frac{1}{2}} \chi(|x|, (r, \infty)) \|^2_{L^2_0} r \, dr \leq C|E| \]
as claimed. Thus the proof will be complete when we see that
\[I_2 \leq C|E|^{1/2}|F|^{1/2}. \]
Now if \(|x| > 4r\), then
\[\frac{1}{\sqrt{|x|^2 - r^2}} \leq \frac{2}{|x|}, \]
so
\[\frac{I_2}{4\pi} \leq \int_0^\infty \int_0^\infty \frac{1}{2\pi} \int_0^{2\pi} \chi(p(r, se^{i\phi}), E)\chi(se^{i\phi}, F) \, d\phi \, ds \, dr \]
\[\leq \int_0^\infty \int_0^\infty \min \left\{ \frac{1}{2\pi} \int_0^{2\pi} \chi(p(r, se^{i\phi}), E) \, d\phi, \frac{1}{2\pi} \int_0^{2\pi} \chi(se^{i\phi}, F) \, d\phi \right\} ds \, dr. \]
As noted earlier,
\[\int_0^{2\pi} \chi(p(r, se^{i\phi}), E) \, d\phi = \int_0^{2\pi} \chi(re^{i\phi}, E) \, d\phi. \]
Thus an application of Lemma 3 completes the proof. □

References

Department of Mathematics, Florida State University, Tallahassee, Florida 32306