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(Communicated by R. Daniel Mauldin)

Abstract. We prove that, for every function /: R+ —> C such that (f(ax) -

f(bx))/x is Denjoy-Perron integrable on [0,+co) for every pair of positive

real numbers a , b , there exists a constant A (depending only on the values

of f(t) in the neighborhood of 0 and -t-co ) such that

rnax)-fmdx=A l0«
Jo x b

To prove this assertion, we identify a Denjoy-Perron integrable function /:

R —» C with a distribution. In this way, we obtain the main result of this

paper: The value at 0 (in Lojasiewicz sense) of the Fourier transform of the

distribution f is the Denjoy-Perron integral of /. Assuming the Continuum

Hypothesis, we construct an example of a non-Lebesgue measurable function

that satisfies the hypotheses of the first theorem.

1. Introduction

The Italian mathematician G. Frullani, 1795-1834, reported to G. A. Plana,

1781-1864, the formula

rfxax)-m)ix = mxagb
Jo x a

in a letter dated in 1821 (cf. Edwards [7], vol. II, p. 339). Later, in 1828,

Frullani published it [11], but apparently with an inadequate proof (cf. Tricomi

[25], p. 49 and Ostrowski [20], p. 320). In 1823 and 1827, Cauchy gave a

satisfactory proof of the formula

f00   f(aX)   - f(bx)      , r r, , /•„«». #
(2) J ' xJy       </x = [/(oo)-/(0)]log^

under certain conditions on / (cf. Ostrowski [20], p. 318-323). This same

formula is attributed to E. B. Elliot [8] by Edwards [7] (vol. II, p. 339).

Cauchy's result has been fully generalized replacing the limits /(0) and f(oo)

by suitable mean values. It was K. S. K. Iyengar [13, 14] who first gave a formula

of this type in 1940. He proved that, being / locally integrable on (0, +oo),
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166 JUAN ARIAS-DE-REYNA

the left side improper integral in (2) exists for every pair of real numbers a , b

if and only if the four limits

M*(f)=   lim  x[    W-dt, lim    [  ¿Mdt,
x^+°°     Jx        t *^+°°J\       t

m*(f)= lim - /  f(t)dt, lim  / f(t)dt
,v-.0+ X J0 ,v^0+ Jx

exist.

According to Ostrowski [21], his proof is not correct but his result was true.

The first right proof is due to R. P. Agnew [1]. He proved that if

L(X)= lim  /      f(t)dt
A->oo JA

exists for each X in some set having positive measure, then L(X) exists for

each X and L(X) = XL ; moreover, the convergence is uniform over each finite

interval. In 1949 Ostrowski [19] improved the theorem, putting it in what we

consider its classical form:

Theorem. Assume f(x) locally integrable in (0, +00). Then we have, if both

limits

(3) m(f)= lim x[  ttàdt,        M{f)=   lim   i f f(t)dt
*->0+     Jx      t *-*+ooXjx

exist, then for any positive a, b,

f°° f(ax) - f(bx) ,       ,,„~        ,,,,,    a
(4) J xJy    'dx = {M{f)-m{f))logj-.

Conversely, if the integral in (4) is convergent for a set of couples of positive values

of a and b, such that a/b runs through a set of positive measure, both M(f)

and m(f) exist.

A. Ostrowski said that the proof of this result was difficult and would be

given elsewhere. The theorem was proved by R. P. Agnew in 1951 [2] and

A. Ostrowski's proof appeared in 1976 [21]. Finally F. G. Tricomi ([25], pp. 49-

51 and [24]) and A. Ostrowski [19] generalized this formula in several ways.

Now, before introducing our theorem, let us consider the following: Let I?

be a linear space of real functions defined on (0, +00) and I: f —> R a linear

form, that we denote by 1(f) = /0°° f(x) dx , such that, if / € £> and a > 0,

then the function g defined by g(x) = f(ax) belongs to ¿? and
/■oo /-oo

a
roo /«cx>

i /    f(ax)dx= /    f(x)dx.
Jo Jo

Then, given /: (0, +00) —> R such that (f(ax) - f(bx))/x belongs to If, for

all positive a and b, there exists a group homomorphism <p : R+ —♦ R such

that

f«^-(!)-
This is contained in essence in A. Ostrowski [21].
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ON THE THEOREM OF FRULLANI 167

If we could prove that tp is measurable, it would follow that <p(t) = A logt,

where A is independent of t.

We thought about proving our theorem when we made the following remark

about Frullani's integrals: In every concrete example, the axiom " <p is measur-

able" is consistent with the ordinary theory of sets. This follows from Solovay's

theorem [23]:

Theorem (Solovay). Assume that there exists an inaccessible cardinal. Then there

is a model ofZFC in which every set of reals definable from a countable sequence

of ordinals is Lebesgue measurable.

What we were searching for was a Frullani's "monster", that is, a function

/ such that all the Frullani integrals, as in (5), exist but the homomorphism

(p is nonmeasurable. We managed to prove that such a monster does not exist,

but doing so we obtained a theorem like Frullani's in which / is not supposed

locally integrable, even measurable, and therefore the value of the constant is

not given by A. Ostrowski's formula (3).

To prove that our theorem is not contained in the classical one, we construct

assuming the Continuum Hypothesis, a nonmeasurable function / such that,

for every s, f(s A-1) - f(t) = 0 a.e., so that we can apply our Theorem 2 to

f. Changing the variable, we get an example for Theorem 2 where / is not

measurable. Martin's axiom suffices here because all we need show is that the

union of less than the continuum sets of Lebesgue measure zero is of Lebesgue

measure zero. As Martin's axiom has been treated at length (D. H. Fremlin

[10]), we have detailed information concerning the hypotheses that are consis-

tent with it. In particular, the conclusion of our Theorem 3 is also consistent

with the negation of the Continuum Hypothesis.

In our exposition, we prove first a kind of theorem of Frullani for the

Lebesgue integral. Note that this theorem cannot be applied to most exam-

ples in calculus texts, where we find improper but not Lebesgue integrals. That

is the reason we later extend the theorem for the generalized Riemann integral

[18], also known as the Denjoy-Perron integral.

The above example shows too that the known proofs of Frullani's theorem

cannot be extended to our theorem. We give a new proof that we have not

found in the bibliography (cf. J. Edwards [7], F. G. Tricomi [25], A. Ostrowski

[20], G. M. Fichtenholz [9], G. Aumann and O. Haupt [5], H. Jeffreys and

B. S. Jeffreys [15], T. M. Apóstol [4]).

Solovay's theorem makes clear that we can get many generalized theorems

changing the definition of the integral; for example, we would use the integral

considered in Cheng-Ming Lee [16].

We want to add that the most important result of the paper is Theorem 6

(about the value at 0 of the Fourier transform of a Denjoy-Perron integrable

function).
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168 JUAN ARIAS-DE-REYNA

2. Frullani's theorem for Lebesgue integral

Theorem 1. Let f: [0, +oo) —► R be a function such that (f(ax) - f(bx))/x is

integrable on [0, +00) for every pair of positive real numbers a, b. Then there

exists a constant A e R such that

f°° f(ax) - f(bx)  ,        ..     a
(6) Jo !x >dx = Aloè-b,

for every a, b > 0.

Proof. First observe that the measurability of / is not a hypothesis of the

theorem. Let us take x = e', a = loga and ß = logb. We obtain that (6) is

equivalent to

{f(el+")-f(e'+ß)}dt = A(a-ß).

So it suffices to prove the theorem that follows.

fJ —1

Theorem 2. Let g: R —► R be a function such that g(x A- a) - g(x A- ß) is

Lebesgue integrable for every pair of real numbers a, ß . Then there exists a

constant A such that

(7)
/+00

{g(x + a)-gix + ß)}dx = Aia-ß).
-00

Proof. Let ha be defined by hn(x) = g{xA-a)-g{x). We know that hn e L (R)

for every real number a .

Moreover, it is obvious that hn{x) A- h Ax A- a) = hit+„ix).

Hence, hn{x) + hß(x + a) = hß(x) a- ha(x A- ß).

All these functions belong to LX(R), so we can apply Fourier's transform

and we oDtain

Thus we have

hn(x) + e2n "xhßix) = hßix) + e2n'ßxhaix).

___ j _ e2nißx _

hnix) =-r-^—h ix)

Let us observe that hJx) is continuous and G{ß) = ¡*™{gixA-ß)-g{x)}dx

hniO), and so

Giß) = lim--r—h {x) = ?-G(a).

Now, if we choose A = (7(1), we have Giß) = Aß , which leads to

/+00

{gix + a-ß)-gix)}dx
-00

/+00

{gix + a)-gix + ß)}dx,
-00

getting Theorem 2.
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The next theorem, which contains the example we talked about in the intro-

duction, must be compared with C. Burstin's theorem: A Lebesgue measurable

function /: R —> R having arbitrary small periods is a constant a.e. (cf. R. Cig-

noli and J. Hounie [6] or J. M. Henle [12]).

Theorem 3. Assuming the Continuum Hypothesis, there exists a nonmeasurable

function f: R -+ R such that, for every s eR,

(8) f(sA-t) = f(t)

for almost every t e R.

Note that, for every seR, there is a different set of measure zero Zs, so

that (8) does not imply that / is constant.

Proof. We shall construct / as the characteristic function of some set A cR.

To construct A , we must first choose a certain Hamel basis of R over Q. Let

3Z be the set of all compact subsets of R of positive Lebesgue measure. The

cardinality of 3? is the same as that of R. So we can obtain a transfinite

sequence (Ka: a < cox) with the members of 3f. Now, by transfinite induc-

tion, we define two transfinite sequences of real numbers (xn: a < wx) and

(yn: a < œx) in the way that follows.

First, since K0 is of positive measure, we can choose z0 , z'0 in K0 linearly

independent over the field Q. We set x0 = z0 , y0 = 2z'0 .

Now, suppose we have chosen the sequences (xß : ß < a) and (yß : ß < a)

so that the set Bt = {xß\ß < a} U {yß\ß < a} is linearly independent over the

field Q. As we assumed the Continuum Hypothesis, the set Bn is countable

and, since K has positive measure, we can select z and z e K such that

B u {z , z } is linearly independent over the field Q. Then we set x = z

and y  =2z  .

Now we complete the linearly independent set {xja < cox} U {yja < co,} to

become an algebraic basis B of R over Q and we form a transfinite sequence

(a la < co.) with the members of B .

We can define now the set A . Observe that every real number x ^ 0 can be

expressed in just one way as a finite linear combination

k=\

where q eQ does not vanish and a, < a, < • • • < a„ . Let A be the set of

those xeR such that qtt   is an integer.

Now we prove that, for every s e R, there exists Zs of measure zero such

that x e R\Zs implies that x e A if and only if x + s e A . To see this, we

note that, being
in

s = lZPiaß,
1=1
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170 JUAN ARIAS-DE-REYNA

the representation of 5 as a linear combination of elements of the basis B,

every x expressed as in (9) satisfies, whenever an > ßm , that x A- s e A if

and only if x e A (we are supposing that ßm > ßj if i < m). So that we can

choose Zs as the linear span of the vectors of the set {a*|£ < ßm}. Since Zs

is countable, it is a set of measure zero. This proves that the function / = xA

verifies, for every 5 e R,

f(s + t) = f(t) a.e.

Let us see now that / is non-Lebesgue measurable. We prove this assertion

showing that, for every compact set K of positive measure, we have

(10) KnA¿0,      Kn{R\A)¿0.

For, given such a compact K, there is an a < cox such that K — Ka. Now,

the expressions
i      1

z  — x ,        z   = - y

are the representations of the elements z and z' of K as linear combinations

of elements of the basis B . So zn e A and z'a £ A . This proves (10).

3. Distributions and the Denjoy-Perron integral

It is usual to identify a locally integrable function /: R —> C with the distri-

bution Tf: 21 —► C defined by Tfitp) — f*™ f(t)<p(t)dt. Nevertheless, there

is a problem here: there exist locally integrable functions /: R —► C that admit

a derivative f'(x) at all points x e R, without being f locally integrable. In

this situation we cannot identify f with DTf .

However, if we use the Denjoy-Perron integral instead of the Lebesgue inte-

gral, the problem vanishes. To prove this, we need a theorem of W. F. Pfeffer

[22] on the Denjoy-Perron integral.

When we refer to the Denjoy-Perron integral we mean here the generalized

Riemann integral as it is defined in R. M. McLeod [18]. This is justified, since

both integrals are the same over compact intervals.

Theorem 4 (Pfeffer). If f: [a, b] —► R is Denjoy-Perron integrable on [a, b]

being

F(x) = (DP) f f(t)dt,
Ja

and g is a function of bounded variation on [a, b], then the product fg is

Denjoy-Perron integrable and

(DP) f ' f(t)g(t) dt = F(b)g(b) - Fia)gia) - [ Fit) dg(t).
Ja Ja

We denote by iDP) fa' fit) dt the Denjoy-Perron integral of / on [a, b].

We say that f: R —* C is a locally Denjoy-Perron integrable function when,

for every bounded interval  [a, b] c R,  /  is Denjoy-Perron integrable on
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ON THE THEOREM OF FRULLANI 171

[a, b]. If /: R —► C is locally Denjoy-Perron integrable, we define Tf: 3¡ —> C

by
/ + oo

f(t)<p(t)dt.

Note that Tf is a distribution because if sup(p) c (a, b), by Theorem 4, we

can write

/+oo rb fb
f(t)tp(t)dt = (DP)      f(t)<p(t)dt = -      F(t)d<p(t)

-oo Ja Ja

and, since F is continuous (see R. M. McLeod [18] p. 58), we have

rb

TA<p)\ = [  F(t)<p'(t)dt
Ja

<Ma hsxxo\<p(t)\.

Now, if / is differentiable at every point, f is locally Denjoy-Perron inte-

grable (see R. M. McLeod [18], p. 27). Moreover, Tf, = DTf, because if

(p e Si , we have by Theorem 4:

/+oo r+oo

f(t)<p(t)dt = - f(t)<p'(t)dt=(DTf,
-oo J — oo

<p)

Theorem 5. Let f: R —> C Denjoy-Perron integrable. Then f is a tempered

distribution.

Proof. Put F(x) = (DP) /* f(t) dt for every xeR.
By Theorem 4, for every cp e S,

(DP) [ f(t)tp(t)dt = F(b)<p(b) - F(a)tp(a) - [ F(t)dtp(t).
Ja Ja

Observe that, as F is bounded and continuous and tp e S, the Riemann-

Stieltjes integral /^ F(t)d<p(t) is defined, and

lim  F(b)tp(b)=   lim  F(a)<p(a) = 0.
b—>+oo a—>-oo

So f(t)tp(t) is Denjoy-Perron integrable on R and

/+oo r + oo

f(t)<p(t)dt = - F(t)<p'(t)dt.
-oo J —oo

Now, since | f*™ F(t)(p'(t) dt\ < Afsupi6R \(p'(t)\, we see that the linear form

<p ̂ (DP) f+™ f(t)tp(t) dt is a tempered distribution.
As we want to extend the proof of Theorem 2 to the Denjoy-Perron integral

instead of the Lebesgue integral, we need S. Lojasiewicz's definition [17] of the

value of a distribution at a point. It is said that a distribution T has a value

at a point a when there exists the limit

lim T(a A- Xx)

in the space Si' of distributions. This limit, when it exists, is a constant distri-

bution, and we say that this constant is the value of T at a (see S. Lojasiewicz

[17] or P. Antosik, J. Mikusiriski and R. Sikorski [3]).
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172 JUAN ARIAS-DE-REYNA

Theorem 6. Let f: R —* C be Denjoy-Perron integrable.   Then the Fourier

transform of f has the value (DP) f_^ f(t) dt at 0.

Proof. Fix cp e 3¡ . We must prove

n+oo

lim(f(Xx), <p(x)) = ((DP)J^f(t)dt

Let us observe that

(/(Ax), f(x)) = /fix), tp (j) j\ = (fit

and since

f{t)dt

©«

r+oc i   (i

J-oo    I9 U
— 2nixt j

e dx /+oo .tp(x)e~l 'x ' dt = <p(Xt),
-oo

we have

/+oo f(t)f(kt)dt
-oo

So it remains to prove that

/+oo / /*+oo

f(t)f(kt)dt=f(0)[(DP) f(t)dt
-oo V ./-oo

where (p e S.

To prove ( 11 ), we can replace / by f+g where g is any Lebesgue integrable

function. We can therefore assume that

/■+00 pO

(DP) f(t)dt = (DP) f(t)dt = 0.
JO J-oo

If we put F(x) = (DP) /0V f(t) dt, then Umx^+oo F(x) = lim^,^ F(x) = 0.

We know that (p is of bounded variation. So, given e > 0, there exists M > 0

such that, for every y > M and X e R, we have

Í F(t)d(p(Xt) <e,
/:J —oo

F(t)dtp(Xt) <£,

\F(y)9(*y)\<e>     and     \F(-y)tp(-Xy)\<e.

Moreover, by Henstock's lemma (McLeod [18], p. 74), there exists a function

ô : R —► J^ , being J*" the set of closed intervals of R, verifying that Ç eô(Ç)

and the condition that follows:

If a = t0 < i, < ••• < tn = b, ik e [tk_x, tk] c 3(ik), (b, +oo) c ¿(+oo)
and (-oo, a) C ¿(-oo), then

n

E
A = l

/«*)('* 'Ar-1- (Z)/»)
•/'*-i

< e.

We can also assume that, for every £ e R, the oscillation of F on <5(£) is less

than e/(l + K), where F = f*™ \(p'(t)\dt is the total variation of <p over R,

and such that ô(A-oo) c [M, +oo] and <5(-oo) c [-oo, -M].
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Then, if a = t0 < tx < ■ ■ ■ < tn = b, $k € [tk_x , tk] C S(Çk),  ib, +00) c

<5(+oo) and (-00, a) c S(-oo), we have

« r+00

¿ZttWMkWk - h-x) - /       F(t)dip(Xt]
k=\ J-°°

<4e + Í2Mk)0(^k)(tk-tk_x)
k = X

- ¡F(b)f(kb)-F(a)f(ka) + Í F(t)d<p(kt)

<4e+ jzmkm^k){tk-tk_x)
k=\

- \y.F(tk)(piXtk)-Fitk_x)(piXtk_x)A- J*F(t)df(kt)\

n

< 4s + ¿2{f(Zk)(tk - /,_,) - (F(tk) - F(tk_x))}f(ktk)
k = \

- Y,F(tk)i<piXtk) - p(kÇk)) -JTF{tk_x)i<piXJ;k) - mk-i))
k=\ k=X

A- f   F(t)df(kt)
Ja

g
< 4e + e sup \tp(t)\ A--=7 V < 5e + e sup \f(t)\.

X   +   V ,£R

It is clear that, for all X sufficiently small,

« /-+00

#(0)£/(«*)('* ~'*-i)- /      F(t)df(kt)
k=\ J-°°

Now, if we choose S such that

< 6e + esup|p(/)|.
leR

\k = X

we will have

» ^+00

Y.f^k)(h-tk_x)-(DP) f(t)
1.  , J—00

dt <
supf€R |0(OI'

/ + OO r + OOf(t)dt- F(t)d<p(Xt)
-00 J—00

and the proof is completed.

< 7e + esup|0(r)
l€R

4. Frullani's theorem for the Denjoy-Perron integral

Theorem 7. Let f: [0, +00) —> R be a function such that (f(ax) - f(bx))/x is

Denjoy-Perron integrable over [0, +00) for every pair of positive real numbers
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174 JUAN ARIAS-DE-REYNA

(DP) fJo

a, b . Then there exists a constant A satisfying

f(ax)-fibx)dx = Al    i*\
10 x ^b)

Proof. As in the proof of Theorem 1, changing variables (McLeod [18], p. 64),

it suffices to prove the following theorem.

Theorem 8. Let g: R —> R be a function such that gix + a) - g(x + ß) is

Denjoy-Perron integrable over R for every pair of real numbers a, ß . Then

there exists a constant A satisfying

/+oo
{gix + a)-gix + ß)}dx = Aia-

-OO
ß).

Proof. The proof of this theorem is analogous with that of Theorem 2.   Put

KM) - S(x + a) - g(x). Then

ha(x) A- hß(x + a) = hß(x) + ha(x + ß).

Applying the Fourier transform we obtain

i"~"/    \ Ixinx'i    ,    ,       i~~,    .;    ,    , 2nißxj    ,    .2nißxf",    ,
hn(x) + e       hß(x) = hß(x)hß(x) + e    phn(x)       hn(x).

Thus, in a neighborhood of 0, we have

-—- 1 — e        ~~~
hn(x) =-=—:—h (x).

Since the function (1 - e n' x)/(l - e n"iX) is infinitely differentiable, we can

apply the theorem of Lojasiewicz [17], p. 14 (see also P. Antosik, J. Mikusiñski,

and R. Sikorski [3], p. 43). So

We now apply Theorem 6 and obtain

/ + 0O n /- + 00
{S(x + ß) - g(x)}dx = ?-{DP) /      {g(x A-a)- g(x)} dx.

-co tx J —oo

We conclude the proof as in Theorem 3.

Theorem 9. Let fx,f2:R^R be functions such that fx(x + a) - fx(x A- ß) and

f(x + a) - f2(x A- ß) are Denjoy-Perron integrable for every pair of real numbers

a, ß . Assume that there exists a constant M > 0 such that fx(x) — f2(x) for

every x such that \x\ > M. Then

/+oo r+OO

{fl{x + a)-fl{x + ß)}dx = {DP)        {f2ix + a)-f2ix + ß)}dx,
-oo J —CO

for every real number a .
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ON THE THEOREM OF FRULLANI 175

Proof. Let f(x) = fx(x)—f2{x). Then / satisfies the conditions of Theorem 8.

Besides, / is Denjoy-Perron integrable. In fact, f(x)-f{x + 2M) = f(x) for

every \x\ < M. Now, it is clear that

/+oo {fix + a)-fix + ß)}dx = 0
-oo

and this proves the theorem.
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