Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Decreasing chains without lower bounds in the Rudin-Frolík order


Author: Eva Butkovičová
Journal: Proc. Amer. Math. Soc. 109 (1990), 251-259
MSC: Primary 04A20; Secondary 54A25
DOI: https://doi.org/10.1090/S0002-9939-1990-1007490-8
MathSciNet review: 1007490
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for every uncountable cardinal less than continuum there exists a chain in the Rudin-Frolík order of $ \beta \omega - \omega $ isomorphic to the inverse order of this cardinal and without a lower bound.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A20, 54A25

Retrieve articles in all journals with MSC: 04A20, 54A25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1007490-8
Keywords: Ultrafilter, Rudin-Frolík order, independent family
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society