Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the number of self-dual bases of $ {\rm GF}(q\sp m)$ over $ {\rm GF}(q)$


Authors: Dieter Jungnickel, Alfred J. Menezes and Scott A. Vanstone
Journal: Proc. Amer. Math. Soc. 109 (1990), 23-29
MSC: Primary 11T30
DOI: https://doi.org/10.1090/S0002-9939-1990-1007501-X
MathSciNet review: 1007501
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E = GF({q^m})$ be the $ m$-dimensional extension of $ F = GF(q)$. We are concerned with the numbers $ sd(m,q)$ and $ sdn(m,q)$ of self-dual bases and self-dual normal bases of $ E$ over $ F$, respectively. We completely determine $ sd(m,q)$, en route giving a very simple proof for the Sempel-Seroussi theorem which states that $ sd(m,q) = 0$ iff $ q$ is odd and $ m$ is even. Using results of Lempel and Weinberger and MacWilliams, we can also determine $ sdn(m,p)$ for primes $ p$.


References [Enhancements On Off] (What's this?)

  • [1] E. Artin, Geometric algebra, Interscience Publishers, New York, 1957. MR 0082463 (18:553e)
  • [2] E. R. Berlekamp, Algebraic coding theory, McGraw-Hill, New York, 1968. MR 0238597 (38:6873)
  • [3] -, Bit serial Reed-Solomon encoders, IEEE Trans. Inform. Theory IT-28 (1982), 869-874.
  • [4] T. Beth, Generalizing the discrete fourier transform, Discrete Math. 56 (1985), 95-100. MR 812946 (87i:42045)
  • [5] T. Beth and W. Geiselmann, Selbstduale Normalbasen über $ GF(q)$, Archiv. Math. (to appear).
  • [6] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory IT-22 (1976), 644-654. MR 0437208 (55:10141)
  • [7] W. Fumy, Orthogonal transform encoding of cyclic codes, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Comput. Sci., vol. 229, Springer-Verlag, 1986, 131-134. MR 864232
  • [8] W. Geiselmann and D. Gollmann, Symmetry and duality in normal basis multiplication, AAECC-6 Proceedings (to appear).
  • [9] J. W. P. Hirschfeld, Projective geometries over finite fields, Clarendon Press, Oxford, 1979. MR 554919 (81h:51007)
  • [10] K. Imamura, On self-complementary bases of $ GF({q^n})$ over $ GF(q)$, Trans. IECE Japan (Section E) E66 (1983), 717-721.
  • [11] K. Imamura, The number of self-complementary bases of a finite field of characteristic two, IEEE Internat. Sympos. Inform. Theory, Kobe, Japan, 1988.
  • [12] K. Imamura and M. Morii, Two classes of finite fields which have no self-complementary normal bases, IEEE Internat Sympos. Inform. Theory Brighton, England, June 1985.
  • [13] A. Lempel and G. Seroussi, Factorization of symmetric matrices and trace-orthogonal bases in finite fields, SIAM J. Comput. 9 (1980), 758-767. MR 592766 (81k:15019)
  • [14] A. Lempel and M. J. Weinberger, Self-complementary normal bases in finite fields, SIAM J. Disc. Math. 1 (1988), 193-198. MR 941350 (89i:11137)
  • [15] R. Lidl and H. Niederreiter, Finite fields, Cambridge University Press, 1987. MR 1429394 (97i:11115)
  • [16] F. J. MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76 (1969), 152-164. MR 0238870 (39:230)
  • [17] -, Orthogonal circulant matrices over finite fields and how to find them, J. Combin. Theory 10 (1971), 1-17. MR 0274312 (43:77)
  • [18] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson, Optimal normal bases in $ GF({p^m})$, Discrete Appl. Math. 22 (1988-89), 149-161. MR 978054 (90c:11092)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11T30

Retrieve articles in all journals with MSC: 11T30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1007501-X
Keywords: Self-dual basis, normal basis, finite field, orthogonal matrix, circulant matrix
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society