A partition theorem for

Authors:
H. J. Prömel and B. Voigt

Journal:
Proc. Amer. Math. Soc. **109** (1990), 281-285

MSC:
Primary 05A17; Secondary 03E35

DOI:
https://doi.org/10.1090/S0002-9939-1990-1007509-4

MathSciNet review:
1007509

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a Hindman-type partition theorem for Baire partitions of .

**[CS]**T. J. Carlson and S. G. Simpson,*A dual form of Ramsey's theorem*, Adv. in Math.**53**(1984), 265-290. MR**753869 (85h:04002)****[GP]**F. Galvin and K. Prikry,*Borel sets and Ramsey's theorem*, J. Symbolic Logic**38**(1973), 193-198. MR**0337630 (49:2399)****[GRS]**R. L. Graham, B. L. Rothschild, and J. Spencer,*Ramsey theory*, Wiley, New York, 1980. MR**591457 (82b:05001)****[Hin]**N. Hindman,*Finite sums from sequences within cells of a partition of*, J. Combin. Theory Ser. A**17**(1974), 1-11. MR**0349574 (50:2067)****[Math]**A. R. D. Mathias,*Happy families*, Ann. of Math. Logic**12**(1977), 59-111. MR**0491197 (58:10462)****[PV]**H. J. Prömel and B. Voigt,*Baire sets of**-parameter words are Ramsey*, Trans. Amer. Math. Soc.**291**(1985), 189-201. MR**797054 (87a:05018)****[PSV]**H. J. Prömel, S. G. Simpson and B. Voigt,*A dual form of Erdös-Rado's canonization theorem*, J. Combin. Theory Ser. A,**42**(1986), 159-178. MR**847547 (87i:05030)****[She]**S. Shelah,*Can you take Solovay's inaccessible away*?, Israel J. Math.**48**(1984), 1-47. MR**768264 (86g:03082a)****[Sol]**R. M. Solovay,*A model of set theory in which every set of reals is Lebesgue measurable*, Ann. of Math.**92**(1970), 1-56. MR**0265151 (42:64)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
05A17,
03E35

Retrieve articles in all journals with MSC: 05A17, 03E35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1007509-4

Keywords:
Ramsey theorems,
finite and infinite sums,
Baire sets

Article copyright:
© Copyright 1990
American Mathematical Society