Commuting and centralizing mappings in prime rings

Author:
J. Vukman

Journal:
Proc. Amer. Math. Soc. **109** (1990), 47-52

MSC:
Primary 16A12; Secondary 16A68, 16A72

MathSciNet review:
1007517

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a ring. A mapping is said to be commuting on if holds for all . The main purpose of this paper is to prove the following result, which generalizes a classical result of E. Posner: Let be a prime ring of characteristic not two. Suppose there exists a nonzero derivation , such that the mapping is commuting on . In this case is commutative.

**[1]**H. E. Bell and W. S. Martindale III,*Centralizing mappings of semiprime rings*, Canad. Math. Bull.**30**(1987), no. 1, 92–101. MR**879877**, 10.4153/CMB-1987-014-x**[2]**M. Brešar and J. Vukman,*Jordan derivations on prime rings*, Bull. Austral. Math. Soc.**37**(1988), no. 3, 321–322. MR**943433**, 10.1017/S0004972700026927**[3]**M. Brešar and J. Vukman,*On left derivations and related mappings*, Proc. Amer. Math. Soc.**110**(1990), no. 1, 7–16. MR**1028284**, 10.1090/S0002-9939-1990-1028284-3**[4]**M. Brešar and J. Vukman,*On some additive mappings in rings with involution*, Aequationes Math.**38**(1989), no. 2-3, 178–185. MR**1018911**, 10.1007/BF01840003**[5]**I. N. Herstein,*Jordan derivations of prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1104–1110. MR**0095864**, 10.1090/S0002-9939-1957-0095864-2**[6]**Joseph H. Mayne,*Centralizing automorphisms of prime rings*, Canad. Math. Bull.**19**(1976), no. 1, 113–115. MR**0419499****[7]**Joseph H. Mayne,*Ideals and centralizing mappings in prime rings*, Proc. Amer. Math. Soc.**86**(1982), no. 2, 211–212. MR**667275**, 10.1090/S0002-9939-1982-0667275-4**[8]**Joseph H. Mayne,*Centralizing mappings of prime rings*, Canad. Math. Bull.**27**(1984), no. 1, 122–126. MR**725261**, 10.4153/CMB-1984-018-2**[9]**Edward C. Posner,*Derivations in prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1093–1100. MR**0095863**, 10.1090/S0002-9939-1957-0095863-0**[10]**J. Vukman,*Symmetric bi-derivations on prime and semi-prime rings*, Aequationes Math.**38**(1989), no. 2-3, 245–254. MR**1018917**, 10.1007/BF01840009

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A12,
16A68,
16A72

Retrieve articles in all journals with MSC: 16A12, 16A68, 16A72

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1007517-3

Keywords:
Prime ring,
derivation,
Jordan derivation,
inner derivation,
commuting mapping,
centralizing mapping

Article copyright:
© Copyright 1990
American Mathematical Society