Commuting and centralizing mappings in prime rings

Author:
J. Vukman

Journal:
Proc. Amer. Math. Soc. **109** (1990), 47-52

MSC:
Primary 16A12; Secondary 16A68, 16A72

DOI:
https://doi.org/10.1090/S0002-9939-1990-1007517-3

MathSciNet review:
1007517

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a ring. A mapping is said to be commuting on if holds for all . The main purpose of this paper is to prove the following result, which generalizes a classical result of E. Posner: Let be a prime ring of characteristic not two. Suppose there exists a nonzero derivation , such that the mapping is commuting on . In this case is commutative.

**[1]**H. E. Bell and W. S. Martindale,*Centralizing mappings of semiprime rings*, Canad. Math. Bull.**30**(1) (1987), 92-101. MR**879877 (88h:16044)****[2]**M. Brešar and J. Vukman,*Jordan derivations on prime rings*. Bull. Austral. Math. Soc.**37**(1988), 321-322. MR**943433 (89f:16049)****[3]**-,*On left derivations and related mappings*Proc. Amer. Math. Soc. (to appear). MR**1028284 (91a:16026)****[4]**-,*On some additive mappings in rings with involution*, Aequationes Math.**38**(1989), 178-185. MR**1018911 (90j:16076)****[5]**I. N. Herstein,*Jordan derivations in prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1104-1110. MR**0095864 (20:2362)****[6]**J. H. Mayne,*Centralizing automorphisms of prime rings*, Canad. Math. Bull.**19**(1) (1976), 113-115. MR**0419499 (54:7520)****[7]**-,*Ideals and centralizing mappings in prime rings*, Proc. Amer. Math. Soc.**86**(1982), 211-212; Erratum**89**(1983), 198. MR**667275 (83k:16025)****[8]**-,*Centralizing mappings of prime rings*, Canad. Math. Bull.**27**(1) (1984), 122-126. MR**725261 (85h:16039)****[9]**E. Posner,*Derivations in prime rings*, Proc. Amer. Math. Soc.**8**(1957), 1093-1100. MR**0095863 (20:2361)****[10]**J. Vukman,*Symmetric bi-derivations on prime and semi-prime rings*, Aequationes Math.**38**(1989) 245-254. MR**1018917 (90k:16038)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A12,
16A68,
16A72

Retrieve articles in all journals with MSC: 16A12, 16A68, 16A72

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1007517-3

Keywords:
Prime ring,
derivation,
Jordan derivation,
inner derivation,
commuting mapping,
centralizing mapping

Article copyright:
© Copyright 1990
American Mathematical Society