On the sectional curvature of compact hypersurfaces

Authors:
Leslie Coghlan and Yoe Itokawa

Journal:
Proc. Amer. Math. Soc. **109** (1990), 215-221

MSC:
Primary 53C40; Secondary 53C42

DOI:
https://doi.org/10.1090/S0002-9939-1990-1010797-1

MathSciNet review:
1010797

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We establish a sufficient condition for compact hypersurfaces of a complete riemannian manifold to be spherical. It is well known, from the works of Jacobowitz, Jorge and Koutroufiotis, and others, that the maximum sectional curvature of such hypersurfaces can be estimated from the curvature of the ambient space and the outer radius. Our result sharpens these estimates. It also implies a new nonimmersibility theorem of the Chern-Kuiper type.

**[1]**C. Baikousis and F. Brickell,*A note on isometric immersions*, J. Austral. Math. Soc. Ser. A**33**(1982), 162-166. MR**668436 (83k:53073)****[2]**C. Baikousis and T. Koufogiorgos,*Isometric immersions of complete Riemannian manifolds into euclidean space*, Proc. Amer. Math. Soc.**79**(1980), 87-88. MR**560590 (81c:53053)****[3]**M. A. Beltagy,*Isometric embedding of a compact Riemannian manifold into a sphere*, Indian J. Pure Appl. Math.**14**(1983), 1406-1411. MR**727730 (85e:53078)****[4]**M. A. Beltagy,*Isometric embedding of a compact Riemannian manifold into hyperbolic space*, J. Indian Math. Soc. (N.S.)**48**(1984), 81-87. MR**878107 (88d:53056)****[5]**J. Cheeger and D. Ebin,*Comparison theorems in Riemannian Geometry*, North-Holland, Amsterdam and Oxford, 1975. MR**0458335 (56:16538)****[6]**S. S. Chern and N. H. Kuiper,*Some theorems on the isometric embedding of compact Riemannian manifolds in euclidean space*, Ann. of Math.**56**(1952), 442-430. MR**0050962 (14:408e)****[7]**H. Jacobowitz,*Isometric embedding of a compact Riemannian manifold into euclidean space*, Proc. Amer. Math. Soc.**40**(1973), 245-246. MR**0375173 (51:11369)****[8]**L. Jorge and D. Koutroufiotis,*An estimate for the curvature of bounded submanifolds*, Amer. J. Math.**103**(1981), 711-725. MR**623135 (83d:53041b)****[9]**L. Jorge and F. Xavier,*An inequality between the exterior diameter and the mean curvature of bounded immersion*, Math. Z.**178**(1981), 78-82. MR**627095 (82k:53080)****[10]**D. Koutroufiotis,*Elementary geometric applications of a maximum principle for nonlinear elliptic operators*, Arch. Math.**24**(1973), 97-99. MR**0315635 (47:4184)****[11]**S. Markvorsen,*A sufficient condition for a compact immersion to be spherical*, Math. Z.**183**(1983), 407-411. MR**706398 (85d:53029)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
53C40,
53C42

Retrieve articles in all journals with MSC: 53C40, 53C42

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1010797-1

Article copyright:
© Copyright 1990
American Mathematical Society