Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Large compact separable spaces may all contain $ \beta {\bf N}$


Author: Alan Dow
Journal: Proc. Amer. Math. Soc. 109 (1990), 275-279
MSC: Primary 54A25; Secondary 03E35, 54D30
DOI: https://doi.org/10.1090/S0002-9939-1990-1010799-5
MathSciNet review: 1010799
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the Cohen model any compact separable space that does not contain $ \beta N$ has cardinality at most of the continuum.


References [Enhancements On Off] (What's this?)

  • [1] James E. Baumgartner and Martin Weese, Partition algebras for almost-disjoint families, Trans. Amer. Math. Soc. 274 (1982), 619-630. MR 675070 (84g:03074)
  • [2] S. Shelah, Proper forcing, Springer Lectures Notes, vol. 940, Springer-Verlag, New York, 1982. MR 675955 (84h:03002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 03E35, 54D30

Retrieve articles in all journals with MSC: 54A25, 03E35, 54D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1010799-5
Keywords: Compact separable spaces, Cohen forcing
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society