Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Betti numbers for modules of finite length


Authors: Hara Charalambous, E. Graham Evans and Matthew Miller
Journal: Proc. Amer. Math. Soc. 109 (1990), 63-70
MSC: Primary 13H10; Secondary 13H15
DOI: https://doi.org/10.1090/S0002-9939-1990-1013967-1
MathSciNet review: 1013967
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a Gorenstein local ring of dimension $ d < 5$ and let $ M$ be a module of finite length and finite projective dimension. If $ M$ is not isomorphic to $ R$ modulo a regular sequence, then the Betti numbers of $ M$ satisfy $ {\beta _i}(M) > (_i^d)$ for $ 0 < i < d$, and $ \sum\nolimits_{i = 0}^d {{\beta _i}(M) \geq {2^d} + {2^{d - 1}}} $.


References [Enhancements On Off] (What's this?)

  • [1] D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447-485. MR 0453723 (56:11983)
  • [2] -, Generic free resolutions and a family of generically perfect ideals, Adv. in Math. 18 (1975), 245-301. MR 0396528 (53:391)
  • [3] D. Buchsbaum and D. S. Rim, A generalized Koszul complex, II: depth and multiplicity, Trans. Amer. Math. Soc. 111 (1964), 197-224. MR 0159860 (28:3076)
  • [4] H. Charalambous, Lower bounds for Betti numbers of multigraded modules, in preparation.
  • [5] E. G. Evans and P. Griffith, Binomial behavior of Betti numbers for modules of finite length, Pacific J. Math. 133 (1988), 267-276. MR 941922 (89d:13014)
  • [6] A. Geramita, E. Davis, and F. Orecchia, Hilbert functions of linked varieties, in "The Curves Seminar at Queen's, III", Queen's Papers in Pure and Appl. Math. 67 (1984), Section F. MR 783097 (86h:14040)
  • [7] E. S. Golod, A note on perfect ideals, in "Algebra" (ed. A. I. Kostrikin), translation by L. L. Avramov, Moscow State University.
  • [8] A. Grothendieck, Eléments de géométrie algébrique III, Publ. Math. IHES 11 (1961), 349-508.
  • [9] T. H. Gulliksen and G. Levin, Homology of local rings, Queen's Papers in Pure and Appl. Math. 20 (1969). MR 0262227 (41:6837)
  • [10] J. Herzog and E. Kunz, Der kanonische Modul eines Cohen-Macaulay rings, Lecture Notes in Math., vol. 238, Springer-Verlag, Berlin, 1971. MR 0412177 (54:304)
  • [11] E. Kunz, Almost complete intersections are not Gorenstein rings, J. Algebra 28 (1974), 111-115. MR 0330158 (48:8496)
  • [12] A. Kustin, Gorenstein algebras of codimension four and characteristic two, Commun. in Alg. 15 (1987), 2417-2429. MR 912779 (88j:13020)
  • [13] A. Kustin and M. Miller, Classification of the Tor-algebras of codimension four Gorenstein local rings, Math. Z. 190 (1985), 341-355. MR 806892 (87a:13022)
  • [14] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics vol. 8, Cambridge University Press, New York, 1986. MR 879273 (88h:13001)
  • [15] C. Peskine and L. Szpiro, Liaison des variétés algébriques I, Invent. Math. 26 (1974), 271-302. MR 0364271 (51:526)
  • [16] P. Roberts, Le théorème d'intersection, preprint.
  • [17] J. Sally, Numbers of generators of ideals in local rings, Marcel Dekker, New York, 1979. MR 0485852 (58:5654)
  • [18] L. Santoni, Horrocks' question for monomially graded modules, Pacific J. Math. (to appear). MR 1028267 (91b:13022)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13H10, 13H15

Retrieve articles in all journals with MSC: 13H10, 13H15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1013967-1
Keywords: Betti numbers, Cohen-Macaulay ring, linkage, Tor-algebra
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society