Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rotation sets of toral flows


Authors: John Franks and Michał Misiurewicz
Journal: Proc. Amer. Math. Soc. 109 (1990), 243-249
MSC: Primary 58F11; Secondary 58F18, 58F21
DOI: https://doi.org/10.1090/S0002-9939-1990-1021217-5
MathSciNet review: 1021217
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the rotation set $ \rho (\Phi )$ for a lift $ \Phi = {\{ {\Phi _t}\} _{t \in \mathbb{R}}}$ of a flow $ \varphi = {\{ {\varphi _t}:{\mathbb{T}^2} \to {\mathbb{T}^2}\} _{t \in \mathbb{R}}}$. Our main result is that $ \rho (\Phi )$ consists of either a single point, a segment of a line through 0 with rational slope, or a line segment with irrational slope and one endpoint equal to 0. Any set of one of these types is the rotation set for some flow.


References [Enhancements On Off] (What's this?)

  • [CFS] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic theory, Springer-Verlag, New York, Berlin, Heidelberg, 1982. MR 832433 (87f:28019)
  • [H] M. Handel, Zero entropy surface diffeomorphisms, preprint.
  • [H2] -, Periodic point free homeomorphisms of $ {T^2}$, preprint.
  • [M] N. G Markley, The Poincaré-Bendixson Theorem for the Klein bottle, Trans. Amer. Math. Soc. 135 (1969), 159-165. MR 0234442 (38:2759)
  • [MZ] M. Misiurewicz and K. Ziemian, Rotation sets of maps of tori, J. London Math. Soc. (to appear). MR 1053617 (91f:58052)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F11, 58F18, 58F21

Retrieve articles in all journals with MSC: 58F11, 58F18, 58F21


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1021217-5
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society