Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A nonlinear Perron-Frobenius theorem


Author: Robert Sine
Journal: Proc. Amer. Math. Soc. 109 (1990), 331-336
MSC: Primary 47H09; Secondary 47H10, 58F11
MathSciNet review: 948156
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ T$ is a nonexpansive map on a domain in a finite-dimensional sup norm space then there is a universal bound on the periods of periodic points. This yields the same result for $ T$ nonexpansive on a domain in a finite-dimensional Banach space which has a polyhedral unit ball. Similar results are obtained for certain nonexpansive maps defined on all of an infinite-dimensional $ {L_p}$ space with $ 1 < p < \infty $.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Akcoglu and U. Krengel, Finite orbits in finite dimensional $ {\ell _1}$ spaces, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 75-78. MR 827121
  • [2] -, Nonlinear models of diffusion on a finite space, Probab. Theory Related Fields 76 (1987), 411-420. MR 917670 (89b:60167)
  • [3] N. Aronszajn and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. MR 0084762 (18:917c)
  • [4] R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math. 42 (1973), 341-355. MR 0341223 (49:5973)
  • [5] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1986), 1139-1141. MR 0159229 (28:2446)
  • [6] M. Edelstein, On nonexpansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60 (1964), 439-447. MR 0164222 (29:1521)
  • [7] U. Krengel, Nonlinear ergodic theorems, preprint. MR 931132 (89h:47105)
  • [8] H. E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR 0493279 (58:12308)
  • [9] P. Mankiewicz, On extension of isometries in normed linear spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 20 (1972), 367-371. MR 0312214 (47:776)
  • [10] R. Nussbaum, Omega limit sets of nonexpansive maps: finiteness and cardinality estimates, preprint. MR 1047751 (91f:47079)
  • [11] -, Hilbert's projective metric and iterated nonlinear maps, Mem. Amer. Math. Soc., no. 391, 1988.
  • [12] S. Roehrig and R. C. Sine, The structure of $ \omega $-limit sets of nonexpansive maps, Proc. Amer. Math. Soc. 81 (1981), 398-400. MR 597649 (82f:47068)
  • [13] H. L Royden, Real analysis, MacMillan, New York, 1963. MR 0151555 (27:1540)
  • [14] M. Scheutzow, Periods of nonexpansive operators on finite $ {\ell _1}$-spaces, preprint.
  • [15] R. C. Sine, On nonlinear contractions in sup norm spaces, Nonlinear Anal. 3 (1979), 885-890. MR 548959 (80i:47082)
  • [16] -, Recurrence of nonexpansive mappings in Banach spaces, fixed points and nonexpansive mappings (R. Sine, ed.), Contemp. Math. 18 (1983). MR 728600 (85e:47077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H09, 47H10, 58F11

Retrieve articles in all journals with MSC: 47H09, 47H10, 58F11


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-0948156-X
PII: S 0002-9939(1990)0948156-X
Keywords: Recurrence, periodic point, nonexpansive map, sup norm space
Article copyright: © Copyright 1990 American Mathematical Society