Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Density of the lexicographically ordered space $ \{0,1\}\sp \alpha$

Author: W. W. Comfort
Journal: Proc. Amer. Math. Soc. 109 (1990), 523-525
MSC: Primary 54A25; Secondary 54F05
MathSciNet review: 1000150
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For an infinite cardinal $ \alpha $, the lexicographically ordered space $ {\left\{ {0,1} \right\}^\alpha }$ is denoted $ \Lambda (\alpha )$; its density is denoted $ d\Lambda (\alpha )$. Completing a computation left unfinished elsewhere, we prove $ d\Lambda (\alpha ) = {2^{_\smile ^\alpha }}$.

References [Enhancements On Off] (What's this?)

  • [1] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 211. MR 0396267
  • [2] W. W. Comfort and D. Remus, Long chains of Hausdorff topological group topologies,(submitted for publication).
  • [3] M. A. Maurice, Compact ordered spaces, Mathematical Centre Tracts, no. 6, Mathematisch Centrum, Amsterdam, 1964.
  • [4] Wacław Sierpiński, Sur une propriété des ensembles ordonnés, Fund. Math. 36 (1949), 56–67 (French). MR 0031528,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 54F05

Retrieve articles in all journals with MSC: 54A25, 54F05

Additional Information

Keywords: Density, lexicographic order
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society