Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Reflexivity of pairs of shifts


Author: Marek Ptak
Journal: Proc. Amer. Math. Soc. 109 (1990), 409-415
MSC: Primary 47D25; Secondary 47B99
DOI: https://doi.org/10.1090/S0002-9939-1990-1007510-0
MathSciNet review: 1007510
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper the reflexivity of a WOT-closed algebra generated by certain pairs of commuting shifts, which are not necessarily doubly commuting, is proved.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc., 28 (1971), 509-511. MR 0278099 (43:3831)
  • [2] D. Gaspar and N. Suciu, On the structure of isometric semigroups, Operator Theory: Adv. Appl. 14, Birkhäuser Verlag Besel, 1984, 125-139. MR 789613 (86m:47062)
  • [3] K. Horak and V. Müller, Functional model for commuting isometries, Czech. Math. J. 2 (1989), 370-379. MR 992140 (90d:47013)
  • [4] M. Ptak, On the reflexivity of pairs of isometries and of tensor products of some operator algebras, Stud. Math. 83 (1986), 47-55. MR 829898 (87f:47066)
  • [5] -, Reflexivity of multiplication operators in certain domains in $ {\mathbb{C}^N}$, Bull. Acad. Polon. Sci. Ser. Math. 37 (1989).
  • [6] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, Heidelberg, Berlin, 1973. MR 0367682 (51:3924)
  • [7] M. Slociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), 255-262. MR 587496 (83e:47031)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25, 47B99

Retrieve articles in all journals with MSC: 47D25, 47B99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1007510-0
Keywords: Reflexivity, pairs of commuting shifts, modified unilateral translation
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society