Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An asymptotic bound for the iterates of certain real functions near a contractive fixed point


Author: Lawrence J. Wallen
Journal: Proc. Amer. Math. Soc. 109 (1990), 395-398
MSC: Primary 26A18
DOI: https://doi.org/10.1090/S0002-9939-1990-1010806-X
MathSciNet review: 1010806
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ x = 0$ is a contractive fixed point for the function $ F$ , then under certain conditions, the iterates $ {F_k}(a)$ are asymptotically equal to the numbers $ {\xi _k}$ defined by $ k = \int_{{\xi _k}}^a {\frac{{du}}{{u - F(u)}}} $. Using somewhat different hypotheses, we give a more precise bound on $ {F_k}(a)/{\xi _k}$ .


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A18

Retrieve articles in all journals with MSC: 26A18


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1990-1010806-X
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society