Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The distribution of Rademacher sums


Author: S. J. Montgomery-Smith
Journal: Proc. Amer. Math. Soc. 109 (1990), 517-522
MSC: Primary 60C05; Secondary 46M35, 60E15, 60G50
MathSciNet review: 1013975
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We find upper and lower bounds for $ {\Pr(}\Sigma \pm {x_n} \geq t)$, where $ {x_1},{x_2}, \ldots $ are real numbers. We express the answer in terms of the $ K$-interpolation norm from the theory of interpolation of Banach spaces.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60C05, 46M35, 60E15, 60G50

Retrieve articles in all journals with MSC: 60C05, 46M35, 60E15, 60G50


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1013975-0
PII: S 0002-9939(1990)1013975-0
Keywords: Rademacher sum, Holmstedt's formula
Article copyright: © Copyright 1990 American Mathematical Society