Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A Thomson's principle for infinite, nonlinear resistive networks

Authors: L. De Michele and P. M. Soardi
Journal: Proc. Amer. Math. Soc. 109 (1990), 461-468
MSC: Primary 94C05; Secondary 46N05
MathSciNet review: 1014643
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose $ \Gamma $ is an infinite resistive electrical network with resistors of the form (2). We prove an existence and uniqueness theorem for the current generated by external current sources by establishing the analogue of Thomson's principle in suitable modular sequence spaces.

References [Enhancements On Off] (What's this?)

  • [Dl] V. Dolezal, Hilbert networks, SIAM J. Control Optim. 12 (1974), 755-778. MR 0363688 (50:16126a)
  • [D2] -, Generalized Hilbert networks, SIAM J. Control Optim. 14 (1976), 26-41. MR 0484789 (58:4661)
  • [D-Z] V. Dolezal and A. H. Zemanian, Hilbert networks II: Some qualitative properties, SIAM J. Control Optim. 13 (1975), 153-161. MR 0363689 (50:16126b)
  • [Du] R. J. Duffin, Nonlinear networks IIa, Bull. Amer. Math. Soc. 53 (1947), 963-971. MR 0022960 (9:285b)
  • [D-S] N. Dunford and J. T. Schwartz, Linear operators, Part I, Wiley Interscience, New York, 1958. MR 1009162 (90g:47001a)
  • [F] H. Flanders, Infinite networks $ I$-Resistive networks, IEEE Trans. Circuit Theory 18 (1971), 326-331. MR 0275998 (43:1751)
  • [K-R] M. G. Krasnoselskii and Y. B. Rutickii, Convex functions and Orlicz spaces, Nordhoff, Groningen, 1961.
  • [L-T] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces part I, Sequence spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1977. MR 0500056 (58:17766)
  • [M] G. J. Minty, Monotone networks, Proc. London Math. Soc. 257 (1960), 194-212. MR 0120163 (22:10920)
  • [S-W] P. M. Soardi and W. Woess, Uniqueness of currents in infinite electrical networks, Università di Milano, 1988, Discrete Appl. Math., in print.
  • [T] C. Thomassen, Resistances and currents in infinite electrical networks, J. Combin. Theory Ser. B, in print. MR 1056821 (91d:94029)
  • [V] M. M. Vainberg, Variational method and the method of monotone operators in the theory of nonlinear equations, Wiley Interscience, New York, 1973. MR 0467428 (57:7286b)
  • [W] J. Y. T. Woo, On modular sequence spaces, Studia Math. 48 (1973), 271-289. MR 0358289 (50:10755)
  • [Z1] A. H. Zemanian, Infinite electrical networks, Proc. IEEE 64 (1976), 6-17. MR 0453371 (56:11635)
  • [Z2] -, The complete behaviour of certain infinite networks under Kirchhoff's loop and node law, SIAM J. Appl. Math. 30 (1976), 278-295. MR 0396113 (52:16903)
  • [Z3] -, Countably infinite, nonlinear time-varying active electrical networks, SIAM J. Math. Anal. 10 (1979), 944-960. MR 541093 (81a:94055)
  • [Z4] -, Nonlinear, resistive, countably infinite electrical networks, Applicable Anal. 8 (1978), 185-192. MR 523955 (80c:94025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 94C05, 46N05

Retrieve articles in all journals with MSC: 94C05, 46N05

Additional Information

Keywords: Nonlinear, infinite electrical networks, flows, modular sequence spaces, minimum energy, currents
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society