Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


A brief proof of Jacobian hypothesis implies flatness

Authors: Masayoshi Miyanishi, Lorenzo Robbiano and Stuart Sui Sheng Wang
Journal: Proc. Amer. Math. Soc. 109 (1990), 327-330
MSC: Primary 13F20; Secondary 13B10, 14E07
MathSciNet review: 1021901
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a polynomial ring in $ n$ variables over a field, and let $ R$ be the subring generated by $ n$ polynomials. We give a short proof of the fact that if the Jacobian determinant of these $ n$ polynomials is 1, then $ S$ is a flat $ R$-module.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F20, 13B10, 14E07

Retrieve articles in all journals with MSC: 13F20, 13B10, 14E07

Additional Information

PII: S 0002-9939(1990)1021901-3
Keywords: Jacobian conjecture, Jacobian hypothesis, smooth algebra, flat module, regular local ring, regualr system of parameters
Article copyright: © Copyright 1990 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia