Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Descriptions of nest algebras

Authors: M. Anoussis and E. G. Katsoulis
Journal: Proc. Amer. Math. Soc. 109 (1990), 739-745
MSC: Primary 47D25; Secondary 47A15
MathSciNet review: 1009984
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Every operator in the algebra of a continuous nest $ \mathcal{N}$ can be factored as a product of two operators which belong to certain diagonal disjoint ideals of $ \operatorname{Alg} \mathcal{N}$. This factorization leads to a new description of nest algebras.

References [Enhancements On Off] (What's this?)

  • [1] J. B. Conway, A course in functional analysis, Graduate Texts in Mathematics, no. 96, Springer-Verlag, New York, 1985. MR 768926 (86h:46001)
  • [2] J. A. Deddens, Another description of nest algebras, in Hilbert Space Operators, Lecture Notes in Math., vol. 693, Springer-Verlag, New York, 1978. MR 526534 (80f:47033)
  • [3] J. A. Erdos, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968), 47-63. MR 0230156 (37:5721)
  • [4] -, On some ideals of nest algebras, Proc. London Math. Soc. 44 (1982), 143-160. MR 642797 (83g:47045)
  • [5] A. Hopenwasser, Hypercasual linear operators, SIAM J. Control Optim. 22 (1984), 911-919. MR 762629 (86c:47063)
  • [6] D. R. Larson, Next algebras and similarity transformations, Ann. Math. 121 (1985), 409-427. MR 794368 (86j:47061)
  • [7] -, Some recent progress in nest algebras, preprint, Dept. of Math., Texas A&M University. MR 1077394 (92g:47059)
  • [8] R. I. Loebl and P. S. Muhly, Analyticity and flows in von Neumann algebras, J. Funct. Anal. 29 (1978), 214-252. MR 504460 (81h:46080)
  • [9] J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. 15 (1965), 61-83. MR 0171174 (30:1405)
  • [10] J. R. Schue, The structure of hyperreducible triangular algebras, Proc. Amer. Math. Soc. 15 (1964), 766-772. MR 0166624 (29:3897)
  • [11] J. L. Orr, Diagonal disjoint ideals of nest algebras, Ph. D. thesis. King's College. University of London, 1989.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D25, 47A15

Retrieve articles in all journals with MSC: 47D25, 47A15

Additional Information

PII: S 0002-9939(1990)1009984-8
Article copyright: © Copyright 1990 American Mathematical Society