A PROPERTY OF PURELY INFINITE SIMPLE C^*-ALGEBRAS

SHUANG ZHANG

(Communicated by Palle E. T. Jorgensen)

Abstract. An alternative proof is given for the fact ([13]) that a purely infinite, simple C^*-algebra has the FS property: the set of self-adjoint elements with finite spectrum is norm dense in the set of all self-adjoint elements. In particular, the Cuntz algebras O_n ($2 \leq n \leq +\infty$) and the Cuntz-Krieger algebras O_A, if A is an irreducible matrix, have the FS property. This answers a question raised in [2, 2.10] concerning the structure of projections in the Cuntz algebras. Moreover, many corona algebras and multiplier algebras have the FS property.

A C^*-algebra A is said to be purely infinite if $(xAx)^{-}$ contains an infinite projection for every nonzero positive element x in A ([7, 12]). The author recently proved ([13]) that purely infinite, simple C^*-algebras have the FS property; namely, the set of self-adjoint elements with finite spectrum is norm dense in the set of all self-adjoint elements. Actually, many interesting C^*-algebras have the FS property. For example, the Bunce-Deddens algebras have FS ([1, 3]); many corona algebras and multiplier algebras have FS ([5, 13]); certain irrational rotation algebras have FS ([6]). Certainly, all AF algebras, von Neumann algebras, and AW^* algebras have FS.

In this short note, we provide another proof for the fact that purely infinite, simple C^*-algebras have the FS property. The algebras O_n ($2 \leq n \leq +\infty$) and O_A, if A is an irreducible matrix, are purely infinite and simple ([7, 8, 9]), and many corona algebras are purely infinite and simple ([12, 13]). Hence, these C^*-algebras have the FS property. In particular, this answers a question of B. Blackadar raised in [2, 2.10] concerning the projection structure of the Cuntz algebras.

1. Theorem. If A is a purely infinite, simple C^*-algebra, then A has the FS property, and hence $RR(A) = 0$.

Proof. To prove the conclusion, by [2, 2.7; 10], it is equivalent to prove that every hereditary C^*-subalgebra of A has an approximate identity consisting of
projections (the HP property). It suffices to show that for any positive element \(x \) in \(A \) and any positive number \(\delta \), there exists a projection \(p \) in the hereditary \(C^* \)-subalgebra \(A_x \) of \(A \) generated by \(x \) such that

\[
\|(1 - p)x\| < \delta.
\]

We can assume that \(\|x\| = 1 \). If \(0 \notin \sigma(x) \), then \(A_x = A \) and \(A \) has a unit. Let \(p \) be the unit. If \(0 \) is an isolated point of \(\sigma(x) \), then let \(p \) be the spectral projection \(E_{(0, \infty)}(x) \) of \(x \) over the interval \((0, \infty)\), which is in \(A_x \). Hence, we can, furthermore, assume that \(0 \) is a limit point of \(\sigma(x) \). From now on, we will denote the Banach space double dual of \(A \) by \(A^{**} \).

For any positive number \(\varepsilon \), we define a real-valued continuous function \(f_\varepsilon(t) \) on the interval \([0, 1]\) as follows:

\[
f_\varepsilon(t) = \begin{cases}
 t & \text{if } 2\varepsilon < t, \\
 \text{linear} & \text{if } \varepsilon < t \leq 2\varepsilon, \\
 0 & \text{if } t < \varepsilon.
\end{cases}
\]

Clearly,

\[
\|x - f_\varepsilon(x)\| < 2\varepsilon.
\]

Let \(B_\varepsilon \) be the hereditary \(C^* \)-subalgebra of \(A \) supported by the open projection \(p_\varepsilon = E_{(\varepsilon, \infty)}(x) \), where \(E_{(\varepsilon, \infty)}(x) \) is the spectral projection of \(x \) in \(A^{**} \) over the interval \((\varepsilon, \infty)\). Clearly, \(f_\varepsilon(x) \) is a strictly positive element of \(B_\varepsilon \), and hence \(B_\varepsilon \) is \(\sigma \)-unital. Similarly, let \(A_\varepsilon \) to be the hereditary \(C^* \)-subalgebra of \(A \) supported by the open projection \(E_{(0, \varepsilon)}(x) \). It is obvious that \(A_\varepsilon \) and \(B_\varepsilon \) are mutually orthogonal, purely infinite, and simple.

Since \(0 \) is a limit point of \(\sigma(x) \), we can choose a nonzero projection \(r \) in \(A_\varepsilon \). Since \(A \) is purely infinite and simple, by a routine argument (for example, see the proof of [2, 3.12]), we can obtain a sequence of nonzero subprojections of \(r \), say \(\{q_i\} \), such that

\[
q_i \sim q_j \quad \text{if } i, j \geq 1, \quad \text{and} \quad q_j q_i = 0 \quad \text{if } i \neq j,
\]

where \(\sim \) means the Murray–von Neumann equivalence of projections in \(A \).

Set \(p_0 = \sum_{i=1}^{\infty} q_i \). It is easily verified that \(p_0 \) is an open projection in \(A^{**} \) and the hereditary \(C^* \)-subalgebra \(B_0 \) of \(A \) supported by \(p_0 \) is simple and stable; actually, \(B_0 \cong q_1 Aq_1 \otimes K \), where \(K \) is the \(C^* \)-algebra consisting of all compact operators on a separable Hilbert space. Since both \(q_1 Aq_1 \) and \(B_\varepsilon \) are \(\sigma \)-unital full hereditary \(C^* \)-subalgebras of \(A_x \) and \(A_x \) is \(\sigma \)-unital also, by [4, 2.8], we have that \(B_0 \cong B_\varepsilon \otimes K \). Obviously, \(B_0 \) is a hereditary \(C^* \)-subalgebra of \(A_x \), and of course is orthogonal to \(B_\varepsilon \). Let \(q_0 = p_\varepsilon + p_0 \). Then \(q_0 \) is an open projection in \(A^{**} \) and the hereditary \(C^* \)-subalgebra \(B_1 \) of \(A_x \) supported by \(q_0 \) is \(* \)-isomorphic to \(B_\varepsilon \otimes K \). Hence \(B_1 \) is \(* \)-isomorphic to \(q_1 Aq_1 \otimes K \). It follows that \(B_1 \) has an approximate identity consisting of projections. Thus, we can find a projection \(p \) in \(B_1 \subset A_x \) such that

\[
\|(1 - p)f_\varepsilon(x)\| < \varepsilon.
\]
Therefore,
\[\| (1 - p)x \| \leq \| (1 - p)(x - f_\epsilon(x)) \| + \| (1 - p)f_\epsilon(x) \| < 3\epsilon. \]
Since \(\epsilon \) can be arbitrarily small, this completes the proof. \(\Box \)

2. **Corollaries.** (i). The Cuntz algebras \(O_n \) (\(2 \leq n \leq \infty \)) and the Cuntz–Krieger algebra \(O_A \), if \(A \) is an irreducible matrix, have the FS property.

(ii). If \(A \) is a \(\sigma \)-unital, nonunital, simple \(C^* \)-algebra with the FS property, then \(M(A)/A \) has the FS property provided \(M(A)/A \) is simple. If, in addition, every projection in \(M(A)/A \) lifts to a projection in \(M(A) \), then \(M(A) \) has the FS property.

Proof. (i) follows from Theorem 1 and [7, 1.6]. (ii) follows from Theorem 1, [12, 1.3] and [13] or [5]. \(\Box \)

3. **Remark.** The author has pointed out in [11, 3.1], under the assumption that \(A \) is a \(\sigma \)-unital \(C^* \)-algebra with the FS property, that \(M(A) \) has the FS property if and only if every self-adjoint element of \(M(A) \) can be written in the following form:
\[\sum_{i=1}^{\infty} \lambda_i p_i + a, \]
where \(\{\lambda_i\} \) is a bounded real sequence, \(\{p_i\} \) is a sequence of mutually orthogonal projections of \(A \), and \(a \) is a self-adjoint element of \(A \). In other words, the general Weyl–von Neumann theorem holds in \(M(A) \), if and only if \(M(A) \) has FS. The reader is referred to [5, 11, 13, 14] for more examples of \(C^* \)-algebras with the FS property and related results.

References

13. _____, *C*-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part I, Part II, Part IV, preprints.

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045