The Haagerup type cross norm on -algebras

Author:
Takashi Itoh

Journal:
Proc. Amer. Math. Soc. **109** (1990), 689-695

MSC:
Primary 46L05; Secondary 46K05

DOI:
https://doi.org/10.1090/S0002-9939-1990-1014645-5

MathSciNet review:
1014645

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Several cross norms between the projective -norm and the projective cross norm are introduced. Let and be -algebras. It is shown that is equivalent to on if and only if or is subhomogeneous.

**[1]**D. P. Blecher,*Geometry of the tensor product of**-algebras*, Ph.D. thesis, University of Edinburgh, May 1988.**[2]**E. Christensen and A. M. Sinclair,*Representations of completely bounded multilinear operators*, J. Funct. Anal.**72**(1987), 151-181. MR**883506 (89f:46113)****[3]**J. Dixmier,*-algebras*, North-Holland, Amsterdam, 1979. MR**0458185 (56:16388)****[4]**E. G. Effros and A. Kishimoto,*Module maps and Hochschtld-Johnson cohomology*, Indiana Univ. Math. J.**36**(1987), 257-276. MR**891774 (89b:46068)****[5]**U. Haagerup,*The Grothendieck inequality for bilinear forms on**-algebras*, Adv. in Math.**56**(1985). 93-116. MR**788936 (86j:46061)****[6]**T. Huruya,*On compact completely bounded maps of**-algebras*, Michigan Math. J.**30**(1983), 213-220. MR**718267 (86c:46068)****[7]**T. Huruya and J. Tomiyama,*Completely bounded maps of**-algebras*, J. Operator Theory**10**(1983), 141-152. MR**715564 (85f:46108a)****[8]**T. Itoh,*The maximal**-norm and the Haagerup norm*, preprint.**[9]**S. Kaijser and A. M. Sinclair,*Projective tensor products of**-algebras*, Math. Scand.**55**(1984), 161-187. MR**787195 (86m:46053)****[10]**I. Kaplansky,*The structure of certain operator algebras*, Trans. Amer. Math. Soc.**70**(1951), 219-255. MR**0042066 (13:48a)****[11]**V. I. Paulsen and R. R. Smith,*Multilinear maps and tensor norms on operator systems*, J. Funct. Anal.**73**(1987), 258-276. MR**899651 (89m:46099)****[12]**R. R. Smith,*Completely bounded maps between**-algebras*, J. London Math. Soc.**27**(1983), 157-166. MR**686514 (84g:46086)****[13]**M. Takesaki,*Theory of operator algebras*I, Springer-Verlag, Heidelberg, 1979. MR**548728 (81e:46038)****[14]**S. L. Woronowicz,*Positive maps of low dimensional matrix algebras*, Rep. Math. Phys.**10**(1976), 165-183. MR**573218 (81m:15014)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46L05,
46K05

Retrieve articles in all journals with MSC: 46L05, 46K05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1990-1014645-5

Keywords:
Haagerup norm

Article copyright:
© Copyright 1990
American Mathematical Society