ON THETA PAIRS FOR A MAXIMAL SUBGROUP

N. P. Mukherjee and Prabir Bhattacharya

(Communicated by Warren J. Wong)

Abstract. For a maximal subgroup M of a finite group G, a Θ-pair is any pair of subgroups (C, D) of G such that (i) $D \triangleleft G$, $D \subseteq C$, (ii) $(M, C) = G$, $(M, D) = M$ and (iii) C/D has no proper normal subgroup of G/D. A natural partial ordering is defined on the family of Θ-pairs. We obtain several results on the maximal Θ-pairs which imply G to be solvable, supersolvable, and nilpotent.

1. Introduction

There has been some interest in the past in investigating how some conditions imposed on a maximal subgroup of a finite group influence the structure of the group. Our objective is to associate a certain family of pairs of subgroups with any maximal subgroup and study how some conditions on the maximal elements (with respect to a natural partial ordering) of such a family imply that the group is solvable, supersolvable, or nilpotent. The family of subgroups we introduce is motivated by the interesting concept of the Index Complex defined in Deskins [4–5].

Definition. Given a maximal subgroup M of a group G, let

$$S_M = \{(A, B) : A \leq G, B \triangleleft G, B \subseteq A, (M, A) = G, (M, B) = M\}.$$

Also, let

$$\Theta(M) = \{(C, D) \in S_M : C/D \text{ contains properly no normal subgroup of } G/D\}.$$

We call any pair (C, D) in $\Theta(M)$ a Θ-pair.

A partial order \leq may be defined on $\Theta(M)$ as follows:

$$(C, D) \leq (C', D') \text{ if } C \leq C';$$

no condition is placed on the second component of the pairs. (One notices that using the definition of $\Theta(M)$, it follows that $D \subseteq D'$. Also, $C = C' \Rightarrow D = D'$). It is easy to verify that

$$(C, D) \leq (C', D') \text{ and } (C', D') \leq (C, D) \Leftrightarrow C = C', D = D'.$$

Received by the editors June 2, 1989 and, in revised form, September 27, 1989.

Key words and phrases. Solvable, supersolvable, nilpotent.

©1990 American Mathematical Society

0002-9939/90 $1.00 + \$.25 per page

589
Obviously, $\Theta(M)$ will contain maximal elements with respect to this ordering. We shall call a maximal element a maximal Θ-pair. As a straightforward example, take $G = \text{Sym}(4)$. Then if $M \in \text{Syl}_2(G)$, $\text{Core}_G M$ is the Klein 4-group and it is easy to see that $(\text{Sym}(3), (e)) \in \Theta(M)$ and $(\text{Sym}(3), (e))$ is a maximal Θ-pair. For any group G and a maximal subgroup M of G, if $(C, D) \in \Theta(M)$, then clearly $D \subseteq \text{Core}_G(M)$; but D need not be equal to $\text{Core}_G M$ as the above example shows.

In §3 we shall obtain conditions on maximal pairs in $\Theta(M)$ which imply G to be solvable, or supersolvable. In §4 we shall obtain conditions on maximal pairs in $\Theta(M)$ which imply G to be nilpotent, or p-nilpotent.

All groups considered are finite. We use standard notation as in Huppert [7]. By a slight abuse of language, by a simple group we shall always mean a simple, non-Abelian group. Also, for convenience we denote $M \triangleleft G$ to indicate that M is a maximal subgroup of G. If $M \triangleleft G$ and $[G : M]$ is composite, then M is called a c-maximal subgroup of G.

2. Preliminaries

If $M \triangleleft G$ and $(M, A) = G$, then any normal subgroup B of G contained in A with $(M, B) = M$ will produce a pair $(A, B) \in S_M$. In particular, $(A, (e))$ where e denotes the identity of G, is also a pair in S_M. If (A, B) is any pair in S_M, then clearly $B \subseteq \text{Core}_G M$.

If $M \triangleleft G$, then $\Theta(M)$ is nonempty. For, let $C \leq G$ such that $(M, C) = G$ and denote

$$D = \prod \{ Y : (C, Y) \in S_M \}.$$

Then, if C/D has no proper normal subgroup of G/D, one has that $(C, D) \in \Theta(M)$. Otherwise, suppose that L/D is a minimal normal subgroup of G/D contained in C/D. Then it is easy to see that $(L, D) \in \Theta(M)$.

The following result will be used frequently in induction arguments.

Lemma 2.1. If (C, D) is a maximal Θ-pair in $\Theta(M)$ and $N \triangleleft G$, $N \subseteq D$, then $(C/N, D/N)$ is a maximal Θ-pair in $\Theta(M/N)$. Conversely, if $(C/N, D/N)$ is a maximal Θ-pair in $\Theta(M/N)$, then (C, D) is a maximal Θ-pair in $\Theta(M)$.

Proof. \Rightarrow: Since $(M, C) = G$, $(M, D) = M$, and C/D has no proper normal subgroup of G/D, it follows that $(C/N, D/N) \in \Theta(M/N)$. If $(C/N, D/N)$ is not a maximal Θ-pair in $\Theta(M/N)$, then suppose that $(C/N, D/N) \leq (X/N, Y/N)$, $C/N \subseteq X/N$. This implies that $C \subseteq X$. Now, one sees that $(X, Y) \in \Theta(M)$. Further, $(C, D) \leq (X, Y)$, since $C \subseteq X$. This violates the maximality of (C, D) in $\Theta(M)$.

\Leftarrow: It is easy to see that $(C, D) \in \Theta(M)$. If (C, D) is not a maximal Θ-pair, then suppose $(C, D) \leq (C_1, D_1)$ and $C \subseteq C_1$. This implies that $(C/N, D/N) \leq (C_1/N, D_1/N)$, violating the maximality of the pair $(C/N, D/N)$. We have used here the fact that $N \subseteq D_1$. To see this, first we observe that $(C_1, M) = G$, $(M, D_1) = M$, and $N \subseteq C \subseteq C_1$. If $N \not\subseteq D_1$, then $ND_1/D_1=
is a normal subgroup of G/D_1, and this, since $(C_1, D_1) \in \Theta(M)$, means $ND_1 = C_1$. However, in that case $G = \langle M, C_1 \rangle = \langle M, ND_1 \rangle = M$ since $\langle M, D_1 \rangle = M$ and $N \subseteq D$, a contradiction.

3. Solvability conditions

Theorem 3.1. A group G is solvable \iff for each $M \leq G$, every maximal Θ-pair (C, D) in $\Theta(M)$ is such that C/D is solvable.

Proof. \Leftarrow: Obviously, the hypothesis cannot hold if G is simple. Let N be a minimal normal subgroup of G. We use induction on the order of G. If $M/N < G/N$ and $(C/N, D/N)$ is a maximal Θ-pair in $\Theta(M/N)$, then by Lemma 2.1, (C, D) is a maximal Θ-pair in $\Theta(M)$. It follows by induction that G/N is solvable, and without loss in generality, N may be assumed to be the unique minimal normal subgroup of G. If $N \subseteq \Phi(G)$, the Frattini subgroup of G, then G is solvable and therefore assume that $G = M_1N$ for some $M_1 \leq G$. If $(N, \langle 1 \rangle)$ is a pair in $\Theta(M)$ and if it is not a maximal Θ-pair, then since M_1 is core-free, $N, \langle 1 \rangle \leq (R, \langle 1 \rangle)$ for some pair $(R, \langle 1 \rangle)$ in $\Theta(M)$. But then $R/\langle 1 \rangle$ has no proper normal subgroup of $G/\langle 1 \rangle$, which is not possible since $N \subseteq R$. Thus $(N, \langle 1 \rangle)$ is a maximal Θ-pair in $\Theta(M_1)$, and so N is solvable, implying that G is solvable.

The converse holds trivially.

We remark that it can be shown that Theorem 3.1 remains valid if the statement "C/D is solvable" is replaced by "C/D is solvable whenever $C/D < G/D$". The proof of the following result is analogous to the proof of Theorem 3.1 and is omitted.

Theorem 3.2. (i) A group G is solvable \iff for each maximal pair (C, D) in $\Theta(M)$, $M \leq G$, one has that $C_{G/D}(C/D) \neq \langle 1 \rangle$ whenever $C/D \leq G/D$.

(ii) A group G is solvable if for every $M \leq G$, each maximal pair (C, D) is such that $L(G/D) \neq \langle 1 \rangle$.

(Here, for any group X, $L(X)$ denotes the intersection of all c-maximal subgroups of X; if there is no subgroup then set $L(X) = X$ ([2-3])).

(iii) A group G is solvable \iff for any two distinct maximal subgroups X and Y of G whenever $\Theta(X)$ and $\Theta(Y)$ have a common maximal pair (C, D) it follows that $[G : X] = [G : Y]$ if $C/D \leq G/D$.

We now give another characterization of solvable groups in terms of Θ-pairs.

Theorem 3.3. A group G is solvable \iff for each c-maximal subgroup M of G, there exists a maximal pair (C, D) in $\Theta(M)$ such that C/D is Abelian.

Proof. \Leftarrow: Obviously, G cannot be simple. Let N be a minimal normal subgroup of G. We use induction on the order of G. If R/N is a c-maximal subgroup of G/N, then R is c-maximal in G; so $\Theta(R)$ contains a maximal pair (C, D) such that C/D is Abelian. If $N \subseteq D$ then $(C/N, D/N)$ is a maximal pair in $\Theta(R/N)$ and $(C/N)/(D/N)$ is Abelian. If $N \nsubseteq D$, then...
if \(ND \subset C \), \(C/D \) will contain a proper normal subgroup of \(G/D \); and if \(C = ND \), then

\[
\langle R, C \rangle = G = \langle R, ND \rangle = R,
\]
a contradiction. We may therefore assume that \(N \not\subset C \). Considering the pair \((CN, DN) \), one has that \(CN/DN \) is Abelian. Let \(K \) be the largest proper normal subgroup of \(G \) contained in \(CN \) such that \(K \leq R \). If \(CN/K \) does not contain any proper normal subgroup of \(G/K \), then \((CN, K) \) is an element of \(\Theta(R) \) and \((C, D) \leq (CN, K) \) implies that \(C = CN \), a contradiction. If on the other hand \(CN/K \) contains a proper normal subgroup of \(G/K \), then suppose that \(H/K \) is a minimal normal subgroup of \(G/K \). Now, \(H \subset CN \), \(H \triangleleft G \), and \(G = \langle R, H \rangle \). Therefore \((H, K) \) is a pair in \(\Theta(R) \), and it is easy to see that \(H/K \) is Abelian. If \((H, K) \) is a maximal pair, then \((H/N, K/N) \) is a maximal pair in \(\Theta(R/N) \) and \((H/K)/(K/N) \) is Abelian. If on the other hand \((H, K) \) is not a maximal pair, then let \((H_1, K_1) \), where \((H_1, K_1) \) is a maximal pair, and consequently \(H \leq H_1 \). One sees that \(K_1 \) is the largest proper normal subgroup of \(G \) in \(H \), that is contained in \(R \); also \(H \) is not contained in \(K_1 \). If \(HK_1 \not= H_1 \), then \(HK_1/H_1 \) is a proper normal subgroup in \(H_1/K_1 \), a contradiction. Hence \(HK_1 = H_1 \). It follows that \(K \subset K_1 \) and \(HK_1/K_1 \) is Abelian. Thus \((H_1/N, K_1/N) \) is a maximal pair in \(\Theta(R/N) \) such that \((H_1/N)/(K_1/N) \) is Abelian. By induction, \(G/N \) is solvable, and without loss in generality one may assume that \(N \) is the unique minimal normal subgroup of \(G \). If \(N \subset L(G) \) (where \(L(G) \) is defined in the statement of Theorem 3.2), then \(G \) is solvable since \(L(G) \) is supersolvable (a published proof appears in [3, Theorem 3]). Thus one may assume that \(G = MN \), where \(M \) is a-maximal and core-free in \(G \). By hypothesis, there exists a maximal pair \((X, \langle 1 \rangle) \) in \(\Theta(M) \) such that \(X/\langle 1 \rangle \) is Abelian. If \(X = N \) then \(G \) is solvable. Let \(\overline{X} \supset X \) and \(X \) be a maximal subgroup of \(\overline{X} \). If \(\overline{X} \) does not contain any proper normal subgroup of \(G \), then \((X, \langle 1 \rangle) \leq (\overline{X}, \langle 1 \rangle) \) and \(X = \overline{X} \), a contradiction. Thus \(\overline{X} \) contains proper normal subgroup of \(G \), and consequently \(N \subset \overline{X} \). From a result of Huppert [6, Satz 2], it follows directly that if any group \(Z \) has a maximal subgroup which is Abelian, then \(Z \) is solvable. Since \(\overline{X} \) has a maximal subgroup which is Abelian, it follows that \(\overline{X} \) is solvable. So \(N \) is solvable and consequently \(G \) is solvable.

The converse holds trivially.

Theorem 3.4. If the index of each maximal pair in \(\Theta(M) \) is a prime, for every \(M < G \), then \(G \) is supersolvable. (The index of a pair \((C, D) \) refers to \([C : D] \)).

Proof. If \(G \) is simple, then the assertion follows trivially. Now, let \(N \) be a maximal normal subgroup of \(G \). We use induction on the order of \(G \). If \(M/N < G/N \) and \((X/N, Y/N) \) is a maximal pair in \(\Theta(M/N) \), then by Lemma 2.1 \((X, Y) \) is a maximal pair in \(\Theta(M) \) and the index of \((X/N, Y/N) \), being equal to \([X, Y] \), is a prime by using the hypothesis. By induction, \(G/N \) is supersolvable and \(N \) may be assumed to be the unique minimal normal
THETA PAIRS FOR A MAXIMAL SUBGROUP

If \(N \not\subset \Phi(G) \), then \(G = M_1N \) for some core-free maximal subgroup \(M_1 \) of \(G \). Then \((N, \langle 1 \rangle) \) is a maximal pair in \(\Theta(M_1) \) and by hypothesis \(o(N) \) is a prime. Hence \(G \) is supersolvable.

Corollary 3.5. A group \(G \) is supersolvable \(\iff \) the index of each maximal pair \((C, D) \) in \(\Theta(M) \) is a prime whenever \(C/D \triangleleft G/D \).

We omit the proof of the following result, which is analogous to Theorem 3.2(iii).

Proposition 3.6. A group \(G \) is supersolvable \(\iff \) for any two maximal subgroups \(X, Y \) of \(G \) whenever \(\Theta(X) \) and \(\Theta(Y) \) have a common maximal pair \((C, D) \), one has that \(C/D \) is cyclic if \(C/D \triangleleft G/D \).

Let \(Q(G) \) denote the characteristic subgroup of \(G \) generated by all \(x \in G \) with the property that
\[
(x) \cdot (g) = (g) \cdot (x)
\]
for every \(g \in G \) (where as usual \((g) \) denotes the subgroup generated by \(g \)). Let \(Q^*(G) \) denote the terminal member in the ascending series defined by:
\[
Q_0(G) = \langle 1 \rangle, \ Q_1(G) = Q(G) \quad \text{and for } i > 1, \quad Q_i(G/Q_{i-1}(G)) = Q_i(G)/Q_{i-1}(G).
\]
These subgroups were introduced in Mukherjee [8]; also see [10] for an exposition.

Theorem 3.7. A group \(G \) is supersolvable \(\iff \) for every maximal pair \((C, D) \) in \(\Theta(M) \), one has that \(Q^*(G/D) \neq \langle 1 \rangle \), for every \(M < G \).

Proof. \(\Leftarrow \): It is obvious from the hypothesis that \(G \) cannot be simple. Let \(N \) be a minimal normal subgroup of \(G \). We use induction on \(o(G) \). As in the proof of Theorem 3.4, it follows that \(G/N \) is supersolvable. Without loss in generality \(N \) may now be assumed to be the unique minimal normal subgroup of \(G \), \(G = MN \), \(M < G \); and \(M \) is core-free. Then \((N, \langle 1 \rangle) \) is a maximal pair in \(\Theta(M) \), and therefore \(Q^*(G) \neq \langle 1 \rangle \). By the minimality of \(N \), \(N \subset Q^*(G) \). Therefore \(N \) is a supersolvably embedded subgroup of \(G \) and \(o(N) \) is a prime ([10, Theorem 7.10, p. 32]). Hence \(G \) is supersolvable.

The converse holds trivially.

Corollary 3.8. A group \(G \) is supersolvable if for every maximal pair \((C, D) \) in \(\Theta(M) \) for each \(c \)-maximal subgroup \(M \) of \(G \), \(Q^*(G) \neq \langle 1 \rangle \).

4. Nilpotency conditions

Theorem 4.1. A group \(G \) is nilpotent \(\iff \) for each maximal pair \((C, D) \) in \(\Theta(M) \) for every \(M < G \), one has \(Z(G/D) \neq \langle 1 \rangle \).

Proof. \(\Leftarrow \): We use induction on \(o(G) \) to show that every maximal subgroup of \(G \) is normal. Clearly, \(G \) cannot be simple. Let \(M < G \) and \(N \) be a minimal normal subgroup of \(G \) contained in \(M \). If \((C/N, D/N) \) is a maximal pair
in \(\Theta(M/N) \), then by Lemma 2.1, \((C, D)\) is a maximal pair in \(\Theta(M) \) and \(Z(G/D) \neq \langle 1 \rangle \). This implies that \(Z((G/N)/(D/N)) \neq \langle 1 \rangle \). By induction, \(M/N \triangleleft G/N \) and so \(M \triangleleft G \). If \(M \) is core-free, then a maximal pair in \(\Theta(M) \) is of the form \((X, \langle 1 \rangle)\) so that \(Z(G) \neq \langle 1 \rangle \). Thus \(G = MZ(G) \) and therefore \(M \triangleleft G \). The result now follows.

The converse holds trivially.

Corollary 4.2. A group \(G \) is nilpotent \(\iff \Theta(M) \), for every \(M \triangleleft G \), contains a maximal pair \((C, D)\) such that \(G/D \) is nilpotent.

Corollary 4.3. Let \(M \triangleleft G \) and \(\Theta(M) \) contain a maximal pair such that \(G/D \) is nilpotent. Then \(M \triangleleft G \).

Theorem 4.4. A solvable group \(G \), whose order is divisible by at least two primes, is nilpotent \(\iff \) the index of each maximal pair in \(\Theta(M) \), for every \(M \triangleleft G \), is the same.

Proof. \(\Leftarrow \): We use induction on the order of \(G \). Let \(N \) be a minimal normal subgroup of \(G \); \(N \) is an elementary Abelian \(p \)-group for some prime \(p \). By induction it follows that \(G/N \) is nilpotent, and without loss in generality it may be assumed that \(N \) is the unique minimal normal subgroup of \(G \). If \(N \not\subseteq \Phi(G) \), then for some \(M \triangleleft G \), \(G = MN \) and \(M \) is core-free. Now, \((N, \langle 1 \rangle)\) is a maximal element in \(\Theta(M) \), and so, by hypothesis, the index of any maximal pair in \(\Theta(M) \) is a power of \(p \). If \(q \) is another divisor of the order of \(G \), then all the elements of order \(q \) in \(G \) cannot lie in \(M \), as they will generate a characteristic subgroup of \(G \). Let \(y \in G \setminus M \) such that \(o(y) = q \). Then \(\langle M, y \rangle = G \). If \(\langle y \rangle \triangleleft G \), then \(G = M \langle y \rangle \) and

\[
[G : M] = o(y) = q = o(N) = p^m
\]

for some \(m \geq 1 \), a contradiction to the fact that \(q \neq p \). Thus we may assume that \(\langle y \rangle \) is not normal in \(G \). So \((\langle y \rangle, \langle 1 \rangle) \in \Theta(M) \). Either \((\langle y \rangle, \langle 1 \rangle)\) is a maximal pair in \(\Theta(M) \), or if not, then \((\langle y \rangle, \langle 1 \rangle) \leq (X, \langle 1 \rangle)\), where \((X, \langle 1 \rangle)\) is a maximal pair in \(\Theta(M) \). But the index of \((X, \langle 1 \rangle)\) is divisible by \(q \), a contradiction. Thus \(N \subseteq \Phi(G) \), and therefore \(G \) is nilpotent.

The converse holds trivially.

We remark that Theorem 4.4 does not remain valid if in its statement one omits the condition that \(G \) is solvable. For example, if \(G \) is simple, then \((G, \langle 1 \rangle)\) is the unique minimal pair in \(\Theta(M) \) for every \(M \triangleleft G \), but \(G \) is not nilpotent unless \(o(G) \) is a prime.

Corollary 4.5. (i) A group \(G \) is nilpotent \(\iff \) the index of each maximal pair in \(\Theta(M) \) for every \(M \triangleleft G \) is the same and is equal to a prime.

(ii) A solvable group \(G \) is nilpotent \(\iff \Theta(M) \), for all \(M \triangleleft G \), contains exactly one maximal pair.

We omit the proof of the following result.
Proposition 4.6. A group G is nilpotent \iff for maximal pairs (C, D) in $\Theta(M)$ and (C_1, D_1) in $\Theta(M_1)$ with $C^G = C_1$, M and M_1 are both normal in G.

For a group G and a prime p, let $O^p(G)$ denote the subgroup generated by all the p'-elements of G.

Theorem 4.7. Let G be a group in which $\Theta(M)$, for each $M \lhd G$, contains a maximal pair (C, D) depending on M such that

$$O^p(G/D) \subseteq C_{G/D}(C/D).$$

Then G is p-nilpotent.

Proof. The assertion follows trivially if G is simple. So, assume now that G is not simple and let N be a minimal normal subgroup of G. We use induction on $o(G)$. By inductive argument, it follows that G/N is p-nilpotent; and one may also assume that N is the unique minimal normal subgroup of G. If $N \subseteq \Phi(G)$, the assertion follows. So, let $G = MN$ for some core-free, maximal subgroup M of G. By hypothesis, $\Theta(M)$ contains a maximal pair (C, D) such that $C^G(G/D) \supseteq O^p(G/D)$. Then $D = \langle 1 \rangle$ and $N \subseteq C_G(O^p(G))$.

Let R/N be a normal p'-complement in G/N. If N is a p'-group, then R is a normal p'-complement of G and the assertion follows. Now, suppose that p divides $o(N)$ Then, N is an elementary Abelian p-group and is a normal Sylow p-subgroup of R. By the Schur-Zassenhaus theorem, $R = LQ$, where LQ is a normal p-complement of N. It is now easy to see that LQ is a normal p-complement in G. Therefore G is p-nilpotent.

For a group G and a prime p, let $Z_{p'}(G)$ denote the subgroup generated by all $x \in G$ which commute with every p'-element of G. We omit the proof of the following result whose proof is analogous to that of Theorem 4.7.

Proposition 4.8. A group G is p-nilpotent if for every $M \lhd G$, $\Theta(M)$ contains a maximal pair (C, D) such that $Z_{p'}(G/D) \neq \langle 1 \rangle$.

We now introduce two new characteristic subgroups of G based on the concept of Θ-pairs. Let

$$\mathcal{T} = \{M \lhd G : \exists \text{ a maximal pair } (C, D) \in \Theta(M), \ Z(G/D) = \langle 1 \rangle \}.$$

Define $A(G)$ to be the intersection of all the elements of \mathcal{T}. Again, define \mathcal{T} exactly in the same way as \mathcal{T} is defined but only replacing the condition that “$Z(G/D) = \langle 1 \rangle$” by the condition that “$Q^*(G) = \langle 1 \rangle$”. Define $B(G)$ to be the intersection of all the elements of \mathcal{T}. (If either of the families \mathcal{T}, \mathcal{T} is empty, the corresponding subgroup is chosen to be G itself).

The proof of the following result is left as an exercise.

Proposition 4.9. (i) $A(G)$ is a characteristic subgroup of G which is nilpotent, and $A/\Phi(G) = Z_{\infty}(G/\Phi(G))$.

(ii) $B(G)$ is a characteristic subgroup of G, and $B(G)$ is supersolvable.
REFERENCES

SCHOOL OF COMPUTER AND SYSTEM SCIENCES, JAWAHARLAL NEHRU UNIVERSITY, NEW DELHI 110067, INDIA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, UNIVERSITY OF NEBRASKA–LINCOLN, LINCOLN, NEBRASKA 68588-0115