Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

On theta pairs for a maximal subgroup


Authors: N. P. Mukherjee and Prabir Bhattacharya
Journal: Proc. Amer. Math. Soc. 109 (1990), 589-596
MSC: Primary 20D10; Secondary 20D25
MathSciNet review: 1015683
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a maximal subgroup $ M$ of a finite group $ G$, a $ \Theta $-pair is any pair of subgroups $ (C,D)$ of $ G$ such that (i) $ D \triangleleft G,D \subset C$, (ii) $ \left\langle {M,C} \right\rangle = G,\left\langle {M,D} \right\rangle = M$ and (iii) $ C/D$ has no proper normal subgroup of $ G/D$. A natural partial ordering is defined on the family of $ \Theta $-pairs. We obtain several results on the maximal $ \Theta $-pairs which imply $ G$ to be solvable, supersolvable, and nilpotent.


References [Enhancements On Off] (What's this?)

  • [1] R. Baer, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115-187. MR 0087655 (19:386d)
  • [2] H. C. Bhatia, A generalized Frattini subgroup of a finite group, Ph. D. thesis, Michigan State Univ., East Lansing, MI, 1972.
  • [3] P. Bhattacharya and N. P. Mukherjee, On the intersection of a class of maximal subgroups of a finite group II, J. Pure Appl. Algebra 42 (1986), 117-124. MR 857561 (88h:20028)
  • [4] W. E. Deskins, On maximal subgroups, Proc. Sympos. Pure Math. 1 (1959), 100-104. MR 0125157 (23:A2462)
  • [5] -, A note on the index complex of a maximal subgroup, Arch. Math. (to appear). MR 1665102 (99j:20035)
  • [6] B. Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409-434. MR 0064771 (16:332a)
  • [7] -, Endliche Gruppen I, Springer-Verlag, Berlin, 1967. MR 0224703 (37:302)
  • [8] N. P. Mukherjee, The hyperquasicenter of a finite group I, II, Proc. Amer. Math. Soc. 26 (1970), 239-243; 32 (1972), 24-28. MR 0268267 (42:3166)
  • [9] N. P. Mukherjee and P. Bhattacharya, The normal index of a maximal subgroup of a finite group, Proc. Amer. Math. Soc. 106 (1989), 25-32. MR 952319 (89i:20052)
  • [10] M. Weinstein (ed.), Between nilpotent and solvable, Polygonal Publ., Washington, NJ, 1982. MR 655785 (84k:20002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D10, 20D25

Retrieve articles in all journals with MSC: 20D10, 20D25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1015683-9
PII: S 0002-9939(1990)1015683-9
Keywords: Solvable, supersolvable, nilpotent
Article copyright: © Copyright 1990 American Mathematical Society