Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

$ t$-linked overrings as intersections of localizations


Authors: David E. Dobbs, Evan G. Houston, Thomas G. Lucas and Muhammad Zafrullah
Journal: Proc. Amer. Math. Soc. 109 (1990), 637-646
MSC: Primary 13F05; Secondary 13B30
MathSciNet review: 1017000
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This sequel to our work on $ t$-linked overrings introduces, characterizes, and applies the $ t$-theoretic analogues of integral domains satisfying the $ QR$- and $ QQR$-properties. In particular, we show that, unlike the situation with $ QQR$-domains, the $ tQQR$-property is stable under the adjunction of an indeterminate.


References [Enhancements On Off] (What's this?)

  • [AHZ] D. F. Anderson, E. G. Houston and M. Zafrullah, Pseudo-integrality (submitted for publication).
  • [D] E. D. Davis, Overrings of commutative rings, II. Integrally closed overrings, Trans. Amer. Math. Soc. 110 (1964), 196-212. MR 0156868 (28:111)
  • [DL] A. de Souza Doering and Y. Lequain, Chains of prime ideals in polynomial rings, J. Algebra 78 (1982), 163-180. MR 677716 (84d:13008)
  • [Do] D. E. Dobbs, A characterization of $ QR$-domains, C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 49-50. MR 985606 (90a:13032)
  • [DHLZ] D. E. Dobbs, E. G. Houston, T. G. Lucas, and M. Zafrullah, $ t$-linked overrings and Prüfer $ v$-multiplication domains, Comm. Algebra 17 (1989), 2835-2852. MR 1025612 (90j:13016)
  • [G] R. Gilmer, Multiplicative ideal theory, Dekker, New York, 1972. MR 0427289 (55:323)
  • [GH] R. W. Gilmer and W. J. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ. 7 (1967), 133-150. MR 0223349 (36:6397)
  • [GO] R. W. Gilmer and J. Ohm, Integral domains with quotient overrings, Math. Ann. 153 (1964), 97-103. MR 0159835 (28:3051)
  • [Gr] M. Griffin, Some results on $ v$-multiplication rings, Canad. J. Math. 19 (1967), 710-722. MR 0215830 (35:6665)
  • [HZ] E. Houston and M. Zafrullah, On $ t$-invertibility II, Comm. Algebra 17 (1989), 1955-1969. MR 1013476 (90i:13019)
  • [K] B. G. Kang, Prüfer $ v$-multiplication domains and the ring $ R{[X]_{{N_v}}}$, J. Algebra 123 (1989), 151-170. MR 1000481 (90e:13017)
  • [MZ] J. L. Mott and M. Zafrullah, On Prüfer $ v$-multiplication domains, Manuscripta Math. 35 (1981), 1-26. MR 627923 (83d:13026)
  • [P] R. Pendelton, A characterization of $ Q$-domains, Bull. Amer. Math. Soc. 72 (1966), 499-500. MR 0190164 (32:7578)
  • [Q] J. Querré, Sur une propriété des anneaux de Krull, Bull. Sci. Math. 95 (1971), 341-354. MR 0299596 (45:8644)
  • [Z$ _{1}$] M. Zafrullah, On finite conductor domains, Manuscripta Math. 24 (1978), 191-204. MR 0485847 (58:5649)
  • [Z$ _{2}$] -, Ascending chain conditions and star operations, Comm. Algebra 17 (1989), 1523-1533. MR 997154 (90b:13023)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13F05, 13B30

Retrieve articles in all journals with MSC: 13F05, 13B30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1990-1017000-7
PII: S 0002-9939(1990)1017000-7
Article copyright: © Copyright 1990 American Mathematical Society